Please wait a minute...
材料导报  2024, Vol. 38 Issue (14): 23020101-9    https://doi.org/10.11896/cldb.23020101
  高分子与聚合物基复合材料 |
静电自组装法构建抗菌抗凝涂层的研究
李鹏程, 魏嘉佳, 孟昊天, 王文轩, 李佳峻, 李达, 涂秋芬*
西南交通大学材料科学与工程学院,成都 610031
Electrostatic Self-assembly Method for the Preparation of Antibacterial and Anticoagulant Surface Coating
LI Pengcheng, WEI Jiajia, MENG Haotian, WANG Wenxuan, LI Jiajun, LI Da, TU Qiufen*
School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
下载:  全 文 ( PDF ) ( 12153KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在临床治疗过程中,血栓形成以及细菌污染导致的高病发率和高致死率严重制约了血液接触类医疗器械的应用和发展。本研究基于溶菌酶(LZM)优异的抗菌性能以及在较广pH范围内所带的正电荷,通过静电自组装,将血液相容性良好的带负电荷的聚苯乙烯磺酸钠(PSS)吸附到材料表面,构建具有抗菌、抗凝性能的生物功能性涂层。傅里叶红外光谱(FTIR)、X射线光电子能谱(XPS)、表面电位、水接触角(WCA)等材料学评价结果证明PDA@LZM/PSS涂层被成功构建。细菌实验的结果表明,PDA@LZM/PSS涂层具有优异的革兰氏阴性菌和革兰氏阳性菌灭杀效果。血液实验结果表明,涂层表面具有优异的抗血小板粘附、激活以及抗血栓形成的性能。细胞实验结果表明,涂层没有细胞毒性,可以应用于血液接触类器械表面改性。涂层稳定性实验结果表明,涂层能够在7 d内维持较为稳定的抗菌、抗凝特性。该涂层的制备方法简单快速,可应用于血液接触类器械表面抗菌、抗凝血改性,可有效降低血栓形成及细菌感染的风险率。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李鹏程
魏嘉佳
孟昊天
王文轩
李佳峻
李达
涂秋芬
关键词:  静电自组装  溶菌酶(LZM)  聚苯乙烯磺酸钠(PSS)  抗菌  抗凝  表面改性    
Abstract: The high morbidity and mortality caused by thrombosis and pathogen contamination have severely restricted the application and development of blood-contact medical devices in clinical treatment. In this work, based on the outstanding antibacterial properties of lysozyme (LZM) and its positive charge over a wide pH range, negatively charged polystyrene sodium sulfonate (PSS) with excellent blood compatibility was electrostatically self-assembled to the surface of the material, creating an antibacterial and anticoagulant bio-functional coating. The results of material characterisation, including Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), surface potential, and water contact angle (WCA), demonstrated the successful fabrication of PDA@LZM/PSS coating. Bacterial experiments revealed that the PDA@LZM/PSS coating had an outstanding killing effect on both Gram-negative and Gram-positive bacteria. Blood experiments showed that the coated surface had excellent anti-platelet adhesion, activation, and anti-thrombosis properties. The results of cell experiments indicated that the coating was non-cytotoxic and could be applied to the surface modification of blood-contact devices. Lastly, stability testing indicated that the coating could maintain its antibacterial and anticoagulant capabilities relatively stable for seven days. The coating preparation was simple and fast, allowing it to be applied to antibacterial and anticoagulant modification on the surface of blood-contact instruments, thereby reducing the risk of thrombus formation and bacterial infection.
Key words:  electrostatic self-assembly    lysozyme (LZM)    sodium polystyrene sulfonate (PSS)    antibacterial    anticoagulant    surface modification
出版日期:  2024-07-25      发布日期:  2024-08-12
ZTFLH:  O647  
通讯作者:  * 涂秋芬,西南交通大学材料科学与工程学院副教授,2007年毕业于四川大学获得博士学位,2007—2010年在西南交通大学从事博士后相关研究。研究方向包括生物材料表界面、血液接触类器械研发、氢分子医学等。tuqiufen@swjtu.edu.cn   
作者简介:  李鹏程,2020年6月于西南交通大学获得工学学士学位。现为西南交通大学材料科学与工程学院生物医学工程专业硕士研究生,在涂秋芬副教授和杨志禄研究员的指导下进行研究。目前主要研究领域为生物医用材料、心血管植入/介入器械表面改性等。
引用本文:    
李鹏程, 魏嘉佳, 孟昊天, 王文轩, 李佳峻, 李达, 涂秋芬. 静电自组装法构建抗菌抗凝涂层的研究[J]. 材料导报, 2024, 38(14): 23020101-9.
LI Pengcheng, WEI Jiajia, MENG Haotian, WANG Wenxuan, LI Jiajun, LI Da, TU Qiufen. Electrostatic Self-assembly Method for the Preparation of Antibacterial and Anticoagulant Surface Coating. Materials Reports, 2024, 38(14): 23020101-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23020101  或          http://www.mater-rep.com/CN/Y2024/V38/I14/23020101
1 Hutton D W, Krein S L, Saint S, et al. Journal of the American Geriatrics Society, 2018, 66(4), 742.
2 Li X, Sim M M S, Wood J P. Arteriosclerosis Thrombosis & Vascular Bio-logy, 2020, 40(5), e119.
3 Meijden P E J V D, Heemskerk J W M. Nature Reviews Cardiology, 2019, 16(3), 166.
4 von Nussbaum F, Brands M, Hinzen B, et al. ChemInform, 2006, 37(47).
5 Murphy K E, Sloan G F, Lawhern G V, et al. Future Medicinal Chemistry, 2020, 12(22), 2067.
6 Dowgiallo M G, Miller B C, Kassu M, et al. Chemical Science, 2022, 13(12), 3447.
7 Hirsh J, Dalen J E, Deykin D, et al. Chest, 1992, 102, 337S.
8 Wiviott S D, Steg P G. Lancet, 2015, 386(9990), 292.
9 Bury D, Ter Heine R, van de Garde E M W, et al. European Journal of Clinical Pharmacology, 2019, 75(7), 921.
10 Visek J, Ryskova L, Safranek R, et al. Clinical Nutrition ESPEN, 2019, 30, 107.
11 Hutt E, Hsu C, Bloomfield D M, et al. Journal of the American College of Cardiology, 2021, 78(6), 625.
12 Fleming A. Proceedings of the Royal Society of London, 1922, 93(653), 306.
13 Saravanan R, Shanmugam A, Ashok P, et al. African Journal of Biotechnology, 2009, 8(1), 107.
14 Jiang L, Li Y, Wang L, et al. Frontiers in Pharmacology 2021, 12, 767642.
15 Ferraboschi P, Ciceri S, Grisenti P. Antibiotics (Basel), 2021, 10(12), 1534.
16 Beaussart A, Retourney C, Quiles F, et al. Journal of Colloid And Interface Science, 2021, 582, 764.
17 Green R J, Su T J, Lu J R, et al. Journal of Physical Chemistry B, 2001, 105(8), 1594.
18 Xu K, Cai K. Materials Letters, 2019, 247, 95.
19 Zhu Y, Sun X, Ding J, et al. Food Science and Technology, 2021, 143, 111136.
20 Li W, Adams T E, Nangalia J, et al. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(12), 4661.
21 Solari F, Varacallo M, Low molecular weight heparin (LMWH), StatPearls Publishing,Treasure Island (FL),2019.
22 Seffer M T, Cottam D, Forni L G, et al. Blood Purification, 2021, 50(1), 28.
23 Wang J, Chen F, Arconada-Alvarez S J, et al. Nano Letters, 2016, 16(10), 6265.
24 De Troyer M, Wissing K M, De Clerck D, et al. Frontiers In Medicine, 2022, 9, 1009748.
25 Kolewe K W, Zhu J, Mako N R, et al. ACS Applied Materials & Interfaces, 2017, 10(3), 2275.
26 Wang H, Wang J, Feng J, et al. ACS Applied Materials & Interfaces, 2022, 14(44), 50142.
27 Ma H, Qiao X, Han L. Biomimetics (Basel), 2023, 8(1), 128.
28 Kim M H, Lee J, Lee J N, et al. Acta Biomaterialia, 2021, 123, 254.
29 Yu Q, Zheng Z, Dong X, et al. Soft Matter, 2021, 17(39), 8786.
30 Lee H, Dellatore S M, Miller W M, et al. Science, 2007, 318(5849), 426.
31 Hu Y, Cai K. Journal of Biomedical Engineering, 2008, 25(3), 738.
32 Song Z, Yin J, Luo K, et al. Macromolecular Bioscience, 2009, 9(3), 268.
33 Decher G, Hong J D, Schmitt J. Thin Solid Films, 1992, s 210-211(2), 831.
34 Solonchenko K, Rybalkina O, Chuprynina D, et al. Polymers, 2022, 14(23), 5172.
35 Donath E, Sukhorukov G B, Caruso F, et al. Angewandte Chemie International Edition, 1998, 37(16), 2201.
36 Onda M, Ariga K, Kunitake T. Journal of Bioscience And Bioengineering, 1999, 87(1), 69.
37 Sakr O S, Jordan O, Borchard G. Drug Delivery, 2016, 23(8), 2747.
38 Fu X C, Shen W X, Yao T Y, et al. Physical chemistry(fifth edition), Higher Education Press, China, 2005(in Chinese).
傅献彩, 沈文霞, 姚天扬, 等.物理化学(第5版), 高等教育出版社, 2005.
39 Sekowski S, Olchowik-Grabarek E, Wieckowska W, et al. Colloids and Surfaces B: Biointerfaces, 2020, 194, 111175.
[1] 史一涵, 贺建林, 丁晟, 杨焜, 侯可心, 李钒. 碳材料用于创伤止血的研究进展[J]. 材料导报, 2024, 38(9): 22090162-13.
[2] 陈京健, 徐能能, 芦拓, 魏群山. 锌阳极氮掺杂多孔碳表面功能层设计及可逆性研究[J]. 材料导报, 2024, 38(6): 23040217-6.
[3] 刘筱涵, 杨培, 周晓燕. 等离子体改性增强农林生物质复合材料界面相容性研究进展[J]. 材料导报, 2024, 38(13): 23030072-11.
[4] 金磊源, 胡芳坤, 姜晓娇, 夏立, 刘冉, 徐佳乐, 涂秋芬, 熊开琴. 基于Notch信号通路抑制剂的多功能血管支架涂层制备及表征[J]. 材料导报, 2024, 38(12): 22120030-8.
[5] 李亮, 刘淑萍, 裴斐斐, 杨雷锋, 刘让同. 载中药聚乳酸多孔纳米纤维医用敷料[J]. 材料导报, 2024, 38(10): 22080169-7.
[6] 黄怡萱, 于鹏, 周正难, 王珍高, 宁成云. 导电聚合物基抗菌复合材料的合成及生物医用研究进展[J]. 材料导报, 2023, 37(9): 21090198-9.
[7] 吴远东, 郑维爽, 李源遽, 都贝宁, 张兴儒, 李家龙, 于盛洋, 肖忆楠, 赖琛, 盛立远, 黄艺. 聚羟基脂肪酸酯(PHAs)基止血材料研究进展[J]. 材料导报, 2023, 37(3): 21010218-9.
[8] 杨长兴, 王固霞, 郭生伟. 油酸改性石墨相氮化碳的制备、表征及摩擦学性能研究[J]. 材料导报, 2023, 37(23): 22100019-7.
[9] 刘茜, 梁晓正, 杨华明. 黑滑石的矿物学特征及加工与应用研究进展[J]. 材料导报, 2023, 37(21): 22030167-10.
[10] 郑洋, 张璇, 卢佳, 何东磊, 宿振宇, 牛伟, 于镇洋, 孙荣禄, 李岩. 医用镁合金体内降解行为与表面改性研究进展[J]. 材料导报, 2023, 37(19): 22020134-16.
[11] 滕桂香, 杨怡凡, 侯苏童, 姚慧, 张春. 一步法制备PLA/PDA/Ag多孔抗菌纳米纤维膜及其
促进伤口愈合作用研究
[J]. 材料导报, 2023, 37(18): 23080053-6.
[12] 谢鑫, 吕楠, 涂秋芬. 基于“酚-胺”化学构建抗污表面的研究[J]. 材料导报, 2023, 37(17): 22030171-6.
[13] 程培雪, 马迅, 刘平, 王静静, 马凤仓, 张柯, 陈小红, 刘剑楠, 李伟. 磁控溅射纳米银含量对钛种植体抗菌性的影响[J]. 材料导报, 2023, 37(16): 22030032-6.
[14] 蒋尊宇, 盛扬, 孙一新, 李坚, Mark Bradley, 张嵘. 包载荧光共轭聚合物的阳离子聚合物纳米微球的合成及协同抗菌效果研究[J]. 材料导报, 2023, 37(14): 22010234-9.
[15] 郭远来, 缪婉, 钱继东, 熊开琴, 涂秋芬. “一步法”构建基于Zn2+的抗菌表面[J]. 材料导报, 2023, 37(12): 22030058-6.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed