Please wait a minute...
材料导报  2024, Vol. 38 Issue (12): 22110309-5    https://doi.org/10.11896/cldb.22110309
  无机非金属及其复合材料 |
准二维钙钛矿中结晶调控与低阈值微纳激光器
高华兴*, 张红旗, 李璇
中国空间技术研究院,北京 100094
Crystallization Modulation and Low-threshold Micro/Nano Laser in Quasi-two-dimensional Perovskites
GAO Huaxing*, ZHANG Hongqi, LI Xuan
China Academy of Space Technology, Beijing 100094, China
下载:  全 文 ( PDF ) ( 9761KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 准二维(Q-2D)钙钛矿由于大的激子结合能和量子限域作用,是一种可以应用于光电器件构筑的有前途的材料。然而,Q-2D钙钛矿是具有丰富晶界和界面的多相结构,在能量传递过程中导致非辐射损耗。本工作通过操纵不同n相的结晶动力学过程,实现了Q-2D钙钛矿中更高效的能量传递。通过在Q-2D钙钛矿前驱体中引入钠离子来实现对Q-2D钙钛矿成核和生长过程的操控。研究表明,钠离子的掺入促进高n相的成核,使不同n相在空间上更均匀地分布,寿命的表征证实该操作促进了能量的转移。得益于这种高效的能量传递过程,与普通薄膜体系的光放大阈值(23.3 μJ·cm-2)相比,掺杂薄膜的光放大阈值降低至14.3 μJ·cm-2。该研究提供了一种有效的优化Q-2D钙钛矿光子学性能的新方法,从而进一步拓宽Q-2D钙钛矿的光子学应用范围。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高华兴
张红旗
李璇
关键词:  准二维钙钛矿  Na+掺杂  结晶调控  能量传递  微纳激光器    
Abstract: Quasi-two-dimensional (Q-2D) perovskite is a promising material that can be applied in novel optoelectronic devices due to its large exciton binding energy and quantum-confined effects. However, Q-2D perovskites exhibit multiphase structures with grain boundaries and interfaces, leading to non-radiative losses during energy transfer. In this work, we achieved a more efficient energy transfer in the Q-2D perovskite by regulating the crystallization kinetic processes in different n-phases. Control of the Q-2D perovskite nucleation and growth process was realized by introducing sodium ions into the Q-2D perovskite precursors. It is found that the incorporation of sodium ions promotes the nucleation of the high n-phase, making the different n-phases more evenly distributed in space, and the characterization of the lifetime confirms that sodium ions doping promotes energy transfer. Thanks to this efficient energy transfer process, the optical amplification threshold of doped films is decreased from 23.3 μJ·cm-2 to 14.3 μJ·cm-2. The results provide a new effective method to optimize the photonics properties of Q-2D perovskites, thus further broadening the range of photonics applications of Q-2D perovskites.
Key words:  quasi-two-dimensional perovskite    Na+-doped    crystallization modulation    energy transfer    micro/nano lasers
出版日期:  2024-06-25      发布日期:  2024-07-17
ZTFLH:  TN201  
基金资助: 吉林省科技发展计划项目(20190601043FG)
通讯作者:  *高华兴,2016年8月、2019年12月分别于吉林大学和英国谢菲尔德大学获得理学学士学位和硕士学位。2019年英国谢菲尔德大学半导体光电子学专业硕士毕业后到中国空间技术研究院工作至今。目前主要从事光电器件可靠性保证方面的研究,发表论文2篇,授权专利2项。ghxghx789@163.com   
引用本文:    
高华兴, 张红旗, 李璇. 准二维钙钛矿中结晶调控与低阈值微纳激光器[J]. 材料导报, 2024, 38(12): 22110309-5.
GAO Huaxing, ZHANG Hongqi, LI Xuan. Crystallization Modulation and Low-threshold Micro/Nano Laser in Quasi-two-dimensional Perovskites. Materials Reports, 2024, 38(12): 22110309-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22110309  或          http://www.mater-rep.com/CN/Y2024/V38/I12/22110309
1 Hodes G. Science, 2013, 342, 317.
2 Song L, Xiao W, Huang L, et al. Materials Reports, 2022, 36(5), 8 (in Chinese).
宋灵婷, 肖文波, 黄乐, 等. 材料导报, 2022, 36(5), 8
3 Sutherland B R, Sargent E H. Nature Photonics, 2016, 10(5), 295.
4 Dong H, Zhang C, Liu X, et al. Chemical Society Review, 2020, 49(3), 951.
5 Xing G, Mathews N, Lim S S, et al. Nature Materials, 2014, 13(5), 476.
6 Zhang Q, Ha S T, Liu X, et al. Nano Letters, 2014, 14(10), 5995.
7 Wang K, Wang S, Xiao S, et al. Advanced Optical Materials, 2018, 6(18), 1800278.
8 Huang L, Dong H, Jia F, et al. Chinese Journal of Luminescence, 2020, 41(12), 1479.
黄铃, 董浩, 贾凤艳, 等. 发光学报, 2020, 41(12), 1479.
9 Zhao X, Lyu J, Ni Z. Acta Physica Sinica, 2021, 70(5), 12.
赵辛未, 吕俊鹏, 倪振华. 物理学报, 2021, 70(5), 12.
10 Zhang Q, Shang Q, Su R, et al. Nano Letters, 2021, 21(5), 1903.
11 Wang C, Yan Z, Xiao J. Materials Reports, 2022, 36(17), 8 (in Chinese).
王超, 严铮洸, 肖家文. 材料导报, 2022, 36(17), 8.
12 Lee J W, Park N G. Light:Science & Application, 2021, 10, 86.
13 Huang Y, Li G, Wen R, et al. Semiconductor Technology, 2022, 47(9), 677 (in Chinese).
黄阳, 李国辉, 温荣, 等. 半导体技术, 2022, 47(9), 677.
14 Li M, Gao Q, Liu P, et al. Advanced Functional Materials, 2018, 28(17), 1707006.
15 Zhang H, Wu Y, Liao Q, et al. Angewandte Chemie International Edition, 2018, 130(26), 7874.
16 Qin C, Sandanayaka A S D, Zhao C, et al. Nature, 2020, 585(7823), 53.
17 Wang K, Park J Y, Dou L. EcoMat, 2021, 3(3), e12104.
18 Lee H D, Kim H, Cho H, et al. Advanced Functional Materials, 2019, 29(27), 1901225.
19 Wu Q H, Thißen A, Jaegermann W. Applied Surface Science, 2005, 252(5), 1801.
20 Wang R, Tong Y, Manzi A, et al. Advanced Optical Materials, 2018, 6(6), 1701311.
21 Pang P, Jin G, Liang C, et al. ACS Nano, 2020, 14(9), 11420.
22 Hu J, Yan L, You W. Advanced Materials, 2018, 30(48), 1802041.
23 Yang S, Niu W, Wang A L, et al. Angewandte Chemie International Edition, 2017, 56(15), 4252.
24 Zhou N, Shen Y, Li L, et al. Journal of the American Chemical Society, 2018, 140(1), 459.
25 Zhou M, Fei C, Sarmiento J S, et al. Solar RRL, 2019, 3(4), 1800359.
26 Qin C, Matsushima T, Potscavage W J, et al. Nature Photonics, 2020, 14(2), 70.
27 Du H, Chen Q, Liu T, et al. Materials Reports, 2022, 36(5), 20 (in Chinese).
杜辉, 陈巧, 刘婷, 等. 材料导报, 2022, 36(5), 20.
[1] 官春艳, 郑启泾, 万正环, 杨锦瑜. 溶胶-凝胶法制备Gd4Ga2O9: Dy3+白光发射荧光粉及其性能[J]. 材料导报, 2024, 38(8): 22100218-6.
[2] 侯芹芹, 江元汝, 甘俊羊, 赵亚娟, 赵彬, 韩彤. 溶剂热法合成La1.9Y0.06Mo2O9∶Eu3+Sm3+荧光粉及其能量传递机理[J]. 材料导报, 2019, 33(12): 1939-1944.
[3] 任强, 魏腾跃, 武秀兰, 霍哲哲, 王保兴. Eu3+对Na3Gd2(BO3)3∶Tb3+发光性能的影响及其能量传递[J]. 《材料导报》期刊社, 2017, 31(6): 7-10.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed