Abstract: Quasi-two-dimensional (Q-2D) perovskite is a promising material that can be applied in novel optoelectronic devices due to its large exciton binding energy and quantum-confined effects. However, Q-2D perovskites exhibit multiphase structures with grain boundaries and interfaces, leading to non-radiative losses during energy transfer. In this work, we achieved a more efficient energy transfer in the Q-2D perovskite by regulating the crystallization kinetic processes in different n-phases. Control of the Q-2D perovskite nucleation and growth process was realized by introducing sodium ions into the Q-2D perovskite precursors. It is found that the incorporation of sodium ions promotes the nucleation of the high n-phase, making the different n-phases more evenly distributed in space, and the characterization of the lifetime confirms that sodium ions doping promotes energy transfer. Thanks to this efficient energy transfer process, the optical amplification threshold of doped films is decreased from 23.3 μJ·cm-2 to 14.3 μJ·cm-2. The results provide a new effective method to optimize the photonics properties of Q-2D perovskites, thus further broadening the range of photonics applications of Q-2D perovskites.
1 Hodes G. Science, 2013, 342, 317. 2 Song L, Xiao W, Huang L, et al. Materials Reports, 2022, 36(5), 8 (in Chinese). 宋灵婷, 肖文波, 黄乐, 等. 材料导报, 2022, 36(5), 8 3 Sutherland B R, Sargent E H. Nature Photonics, 2016, 10(5), 295. 4 Dong H, Zhang C, Liu X, et al. Chemical Society Review, 2020, 49(3), 951. 5 Xing G, Mathews N, Lim S S, et al. Nature Materials, 2014, 13(5), 476. 6 Zhang Q, Ha S T, Liu X, et al. Nano Letters, 2014, 14(10), 5995. 7 Wang K, Wang S, Xiao S, et al. Advanced Optical Materials, 2018, 6(18), 1800278. 8 Huang L, Dong H, Jia F, et al. Chinese Journal of Luminescence, 2020, 41(12), 1479. 黄铃, 董浩, 贾凤艳, 等. 发光学报, 2020, 41(12), 1479. 9 Zhao X, Lyu J, Ni Z. Acta Physica Sinica, 2021, 70(5), 12. 赵辛未, 吕俊鹏, 倪振华. 物理学报, 2021, 70(5), 12. 10 Zhang Q, Shang Q, Su R, et al. Nano Letters, 2021, 21(5), 1903. 11 Wang C, Yan Z, Xiao J. Materials Reports, 2022, 36(17), 8 (in Chinese). 王超, 严铮洸, 肖家文. 材料导报, 2022, 36(17), 8. 12 Lee J W, Park N G. Light:Science & Application, 2021, 10, 86. 13 Huang Y, Li G, Wen R, et al. Semiconductor Technology, 2022, 47(9), 677 (in Chinese). 黄阳, 李国辉, 温荣, 等. 半导体技术, 2022, 47(9), 677. 14 Li M, Gao Q, Liu P, et al. Advanced Functional Materials, 2018, 28(17), 1707006. 15 Zhang H, Wu Y, Liao Q, et al. Angewandte Chemie International Edition, 2018, 130(26), 7874. 16 Qin C, Sandanayaka A S D, Zhao C, et al. Nature, 2020, 585(7823), 53. 17 Wang K, Park J Y, Dou L. EcoMat, 2021, 3(3), e12104. 18 Lee H D, Kim H, Cho H, et al. Advanced Functional Materials, 2019, 29(27), 1901225. 19 Wu Q H, Thißen A, Jaegermann W. Applied Surface Science, 2005, 252(5), 1801. 20 Wang R, Tong Y, Manzi A, et al. Advanced Optical Materials, 2018, 6(6), 1701311. 21 Pang P, Jin G, Liang C, et al. ACS Nano, 2020, 14(9), 11420. 22 Hu J, Yan L, You W. Advanced Materials, 2018, 30(48), 1802041. 23 Yang S, Niu W, Wang A L, et al. Angewandte Chemie International Edition, 2017, 56(15), 4252. 24 Zhou N, Shen Y, Li L, et al. Journal of the American Chemical Society, 2018, 140(1), 459. 25 Zhou M, Fei C, Sarmiento J S, et al. Solar RRL, 2019, 3(4), 1800359. 26 Qin C, Matsushima T, Potscavage W J, et al. Nature Photonics, 2020, 14(2), 70. 27 Du H, Chen Q, Liu T, et al. Materials Reports, 2022, 36(5), 20 (in Chinese). 杜辉, 陈巧, 刘婷, 等. 材料导报, 2022, 36(5), 20.