Please wait a minute...
材料导报  2024, Vol. 38 Issue (11): 22100277-4    https://doi.org/10.11896/cldb.22100277
  金属与金属基复合材料 |
超长时间热处理后镍-石墨封严涂层力学性能演变特性分析
洪森1, 刘九军1, 汪云程2, 吕亮2, 廖桓毅3, 罗屹峰3, 罗张吉3, 蒋耀年3, 毛卫国1,3,*
1 湘潭大学材料科学与工程学院,湖南 湘潭 411105
2 中国航发南方工业有限公司,湖南 株洲 412000
3 长沙理工大学材料科学与工程学院,长沙 410014
Evolution of Mechanical Properties of Nickel-graphite Abradable Coatings After Ultra-long Time Heat Treatments
HONG Sen1, LIU Jiujun1, WANG Yuncheng2, LYU Liang2, LIAO Huanyi3, LUO Yifeng3, LUO Zhangji3, JIANG Yaonian3, MAO Weiguo1,3,*
1 School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, Hunan, China
2 Aecc South Industry Company Limited, Zhuzhou 412000, Hunan, China
3 School of Materials Science and Engineering, Changsha University of Science & Technology, Changsha 410014, China
下载:  全 文 ( PDF ) ( 18220KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 预测超长服役时间后镍-石墨封严涂层的可靠性对合理维护涂层和提升航空发动机工作效率具有重要意义。首先采用热喷涂技术制备了镍-石墨涂层样品,研究了在200 ℃、300 ℃和400 ℃下分别热处理400 h、800 h、1 200 h、1 600 h、2 000 h后镍-石墨涂层的微观结构及力学性能演变。研究表明:热处理时间及温度对涂层的性能有很大的影响。随着热处理时间的延长,涂层的硬度呈现先增大后减小的趋势。在400 ℃热处理2 000 h后,涂层的表面和截面硬度达到最小值,分别为0.46 GPa和0.63 GPa。涂层的内聚强度随热处理时间的延长先降低后略有增加再降低,400 ℃下热处理2 000 h后达到最小值0.43 MPa。镍和石墨发生氧化、晶粒生长、残余应力释放是导致在热处理过程中镍-石墨涂层力学性能发生变化的主要原因。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
洪森
刘九军
汪云程
吕亮
廖桓毅
罗屹峰
罗张吉
蒋耀年
毛卫国
关键词:  镍-石墨封严涂层  热处理  力学性能  超长时间    
Abstract: The reliability and durability of nickel-graphite abradable coatings under long service time are important to effectively maintain and improve engine efficiency. Nickel-graphite coatings were prepared by thermal spraying technology. The corresponding mechanical properties were investigated after heat-treatments at 200 ℃, 300 ℃, 400 ℃ for 400 h, 800 h, 1 200 h, 1 600 h, 2 000 h, respectively. The results showed that the heat treatment time and temperature have a great influence on the properties evolution of the coatings. As the heat treatment time increased, the hardness increased and then decreased. After heat treatment at 400 ℃ for 2 000 h, the surface and cross-sectional hardness of the coatings reached the minimum values of 0.46 GPa and 0.63 GPa, respectively. The cohesive strength between the coating and substrate strongly varied with heat treatment time. After heat treatment at 400 ℃ for 2 000 h, the cohesive strength become 0.43 MPa. The combined effects of nickel and graphite, grain growth and residual stress on the mechanical properties of nickel graphite coatings during heat treatments were discussed in detail.
Key words:  nickel-graphite abradable coatings    heat treatment    mechanical property    ultra-long time
发布日期:  2024-06-25
ZTFLH:  TB332  
基金资助: 国家自然科学基金(11772287);国家科技重大专项(J2019-VI-0017-0132);国家重点研发计划(2021YFB3702304-4);国防基础科研项目(WDZC20195500501)
通讯作者:  *毛卫国,2006年在湘潭大学获博士学位,现任长沙理工大学二级教授、博士研究生导师。长期从事高端装备先进涂层制备及性能评价,发表论文80余篇,授权国家发明专利11项。ssamao@126.com   
作者简介:  洪森,2022年6月在湘潭大学获硕士学位。目前主要从事航空发动机用封严涂层制备及可靠性评价。
引用本文:    
洪森, 刘九军, 汪云程, 吕亮, 廖桓毅, 罗屹峰, 罗张吉, 蒋耀年, 毛卫国. 超长时间热处理后镍-石墨封严涂层力学性能演变特性分析[J]. 材料导报, 2024, 38(11): 22100277-4.
HONG Sen, LIU Jiujun, WANG Yuncheng, LYU Liang, LIAO Huanyi, LUO Yifeng, LUO Zhangji, JIANG Yaonian, MAO Weiguo. Evolution of Mechanical Properties of Nickel-graphite Abradable Coatings After Ultra-long Time Heat Treatments. Materials Reports, 2024, 38(11): 22100277-4.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22100277  或          http://www.mater-rep.com/CN/Y2024/V38/I11/22100277
1 Lai S M. Aeronautical Manufacturing Technology, 1995(A01), 53 (in Chinese).
赖师墨. 航空工艺技术, 1995(A01), 53.
2 Faraoun H I, Grosdidier T, Seichepine J L, et al. Surface and Coatings Technology, 2006, 201(6), 2303.
3 Chen Z X, Li H, Ren L M, et al. Journal of Materials Engineering and Performance, 2020, 29(2), 1156.
4 Trabelsi D, Zouari M, Kharrat M, et al. Transactions of the Indian Institute of Metals, 2018, 71(7), 1653.
5 Liu J M, Yu Y G, Cheng X Y. Thermal Spray Technology, 2017, 9(1), 7 (in Chinese).
刘建明, 于月光, 程旭莹. 热喷涂技术, 2017, 9(1), 7.
6 Yang Y Q, Zhang D M, Liu J M. Thermal Spray Technology, 2012, 4(3), 49 (in Chinese).
杨永琦, 章德铭, 刘建明. 热喷涂技术, 2012, 4(3), 49.
7 Yang J H, Dai X H, Chen L G. Mechanical Engineering and Automation, DOI: 10. 3969/j. issn. 1672-6413. 2019. 02. 057(in Chinese).
杨佳晖, 戴兴浩, 陈利刚. 机械工程与自动化, DOI: 10. 3969/j. issn. 1672-6413. 2019. 02. 057.
8 Ren L S, Li M, Chi J. Transactions of Materials and Heat Treatment 2018, 39(12), 97 (in Chinese).
任良帅, 李敏, 迟静. 材料热处理学报, 2018, 39(12), 97.
9 Ma X, Matthews A. Surface and Coatings Technology, 2007, 202(4), 1214.
10 Jia P, Wang Z P, Wei N. Welding and Joining, DOI: 10. 3969/j. issn. 1001-1382. 2012. 05. 016(in Chinese).
贾鹏, 王志平, 韦宁. 焊接, DOI: 10. 3969/j. issn. 1001-1382. 2012. 05. 016.
11 Lu M Z, Liu J H, Su Q S. Chinese Journal of Materials Research, 1997, 11(4), 407 (in Chinese).
陆明珠, 刘军海, 苏启生. 材料研究学报, 1997, 11(4), 407.
12 Soltani R, Heydarzadeh-Sohi M, Ansari M, et al. Surface and Coatings Technology, 2017, 321, 403.
13 Wu J L, Li Z X, Zhang W G. The Chinese Journal of Process Enginee-ring, 2007, 7(6), 1221 (in Chinese).
吴九岭, 李增喜, 张伟刚. 过程工程学报, 2007, 7(6), 1221.
14 Luo X W, Yu S Y. Nuclear Engineering and Design, 2004, 227(3), 273.
15 Zhang H B, Zhang J B, Liang Y L. Baosteel Technology, 2009(1), 46(in Chinese).
章华兵, 张俊宝, 梁永立. 宝钢技术, 2009(1), 46.
16 Zou Y, Rezaeian A, Szpunar J A. MRS Online Proceeding Library, 2008, 1151, 3.
17 Cui Y J, Guo M Q, Wang C L, et al. Surface and Coatings Technology, 2020, 394, 125915.
[1] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[2] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[3] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[4] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[5] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[6] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[7] 马东帅, 闫二虎, 白金旺, 王豪, 张硕, 王艺豪, 李唐卫, 郭智洁, 周子锐, 邹勇进, 孙立贤. V-Ti-Fe三元合金显微组织、氢传输行为及耐蚀性能研究[J]. 材料导报, 2024, 38(8): 22110007-7.
[8] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[9] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[10] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[11] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[12] 张明玉, 运新兵, 伏洪旺. BASCA热处理对TC10钛合金组织与断裂韧性的影响[J]. 材料导报, 2024, 38(7): 22080020-6.
[13] 杨佳琛, 江海涛, 田世伟, 陈飞达. 基于电子结构理论的微合金Q355B热轧钢力学性能预测[J]. 材料导报, 2024, 38(7): 22090319-5.
[14] 田浩正, 乔宏霞, 冯琼, 韩文文. 石粉替代率对聚合物机制砂粘结砂浆性能及微细观结构的影响[J]. 材料导报, 2024, 38(6): 22050194-7.
[15] 黄留飞, 王小英, 孙耀宁, 陈亮, 王龙, 任聪聪, 杨晓珊, 王斗, 李晋锋. 激光熔化沉积AlxCoCrFeNi系高熵合金的组织与性能[J]. 材料导报, 2024, 38(6): 22090238-6.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed