Please wait a minute...
材料导报  2024, Vol. 38 Issue (1): 22030107-7    https://doi.org/10.11896/cldb.22030107
  金属与金属基复合材料 |
氦离子辐照下6061-Al合金中的氦泡行为研究
闫占峰*, 郑健, 周韦, 王浩
中国工程物理研究院核物理与化学研究所,四川 绵阳 621900
Helium Bubble Behavior in 6061-Aluminum Alloys Under Helium Ion Irradiation
YAN Zhanfeng*, ZHENG Jian, ZHOU Wei, WANG Hao
Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, Sichuan, China
下载:  全 文 ( PDF ) ( 23785KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过室温下的He离子辐照来研究核级6061-Al合金中氦泡的演变行为,辐照剂量为2×1015 cm-2、1×1016 cm-2、1×1017 cm-2和2×1017 cm-2,通过扫描电镜(SEM)和原子力显微镜(AFM)来表征分析辐照后铝合金表面的损伤情况,并通过透射电镜(TEM)表征辐照产生的氦泡等微观缺陷。结果表明,辐照后铝合金产生了表面损伤,表面起泡程度和粗糙度随着He辐照剂量的增加而明显增大。初步计算表明,入射的He大部分都用于形成表面起泡,只有少数分布在基体内形成均匀的氦泡。随着辐照剂量的增加,基体内氦泡的尺寸先保持不变,然后显著增加,而氦泡密度则先增加后降低。另外,还观察到氦泡在析出物和晶界上发生了偏向性聚集和长大。本工作对深入认识铝合金在研究堆内面临的宏观力学性能退化以及可能的辐照失效行为具有重要意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
闫占峰
郑健
周韦
王浩
关键词:  铝合金  氦泡  氦离子辐照  表面起泡  析出物    
Abstract: In the work, the evolution behavior of helium bubbles in nuclear-grade 6061-Al alloy was studied by 190 keV He ion irradiation at room temperature with irradiation fluences of 2×1015 cm-2, 1×1016 cm-2, 1×1017 cm-2 and 2×1017 cm-2, respectively. The surface damage and he-lium bubbles induced by ion irradiation were characterized combining scanning electron microscopy (SEM), atomic force microscopy (AFM) and transmission electron microscopy (TEM). The surface blistering is found to increase obviously with the increasing fluences which contributes to the increasing roughness. Preliminary calculation shows that most of the incident He contribute to the surface blistering while only a small fraction are distributed in the material matrix to form uniform helium bubbles. With the increasing fluences, the He bubble size first remains stable which is independent of fluence, and then increases significantly at higher fluences. Compared with the bubble size change, the bubble density undergoes increase hereafter decrease. In addition, preferential aggregation and growth of helium bubbles on precipitates and grain boundaries which act as the favorable sites for bubble formation were observed. The study of the evolution behavior of helium bubbles is of great significance for fundamental research and understanding the degradation of macroscopic mechanical properties and possible irradiation failure behavior of aluminum alloy in the research reactor.
Key words:  aluminum alloys    He bubble    helium ion irradiation    surface blister    precipitates
发布日期:  2024-01-16
ZTFLH:  TL341  
基金资助: 国防科工局核能开发项目
通讯作者:  闫占峰,2015年6月、2020年7月分别于中国科学技术大学和北京大学获得工学学士学位和博士学位。现为中国工程物理研究院核物理与化学研究所助理研究员,目前主要研究领域为核能材料的辐照损伤效应,在Acta Materialia、Journal of Nuclear Materials等SCI期刊发表多篇论文。zhanfengyan@pku.edu.cn   
引用本文:    
闫占峰, 郑健, 周韦, 王浩. 氦离子辐照下6061-Al合金中的氦泡行为研究[J]. 材料导报, 2024, 38(1): 22030107-7.
YAN Zhanfeng, ZHENG Jian, ZHOU Wei, WANG Hao. Helium Bubble Behavior in 6061-Aluminum Alloys Under Helium Ion Irradiation. Materials Reports, 2024, 38(1): 22030107-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22030107  或          https://www.mater-rep.com/CN/Y2024/V38/I1/22030107
1 Soria S R, Tolley A J, Sánchez E A. Procedia Materials Science, 2015, 8(1), 486.
2 Trinkaus H. Journal of Nuclear Materials, 1985, 133-134, 105.
3 Trinkaus H, Singh B N. Journal of Nuclear Materials, 2003, 323(2-3), 229.
4 Schroeder H, Fichtner P F P. Journal of Nuclear Materials, 1991, 179-183(3), 1007.
5 Chen C A. The study of He behavior in aluminum and stainless steels. Ph. D. Thesis, China Academy of Engineering Physics, China, 2003 (in Chinese).
陈长安. 铝和不锈钢中氦行为研究. 博士学位论文, 中国工程物理研究院, 2003.
6 Ono K, Inoue M, Kino T, et al. Journal of Nuclear Materials, 1985, 133-134(1), 477.
7 Furuno S, Hojou K, Izui K, et al. Journal of Nuclear Materials, 1988, 155-157, 1149.
8 Wang H Y, Zhu W J, Song Z F, et al. Acta Physica Sinica, 2008, 57(6), 3703 (in Chinese).
王海燕, 祝文军, 宋振飞, 等. 物理学报, 2008, 57(6), 3703.
9 Soria S R, Tolley A, Sánchez E A. Journal of Nuclear Materials, 2015, 467, 357.
10 Kamigaki N, Furuno S, Hojou K, et al. Journal of Nuclear Materials, 1991, 179-181, 970.
11 Kamigaki N, Furuno S, Hojou K, et al. Journal of Nuclear Materials, 1992, 191-194, 1214.
12 Cheng Y M, Chen H, Shen Q, et al. Atomic Energy Science and Techno-logy, 2018, 52(3), 385 (in Chinese).
程扬名, 陈浩, 沈琴, 等. 原子能科学技术, 2018, 52(3), 385.
13 Wang H Y, Zhu W J, Deng X L, et al. Acta Physica Sinica, 2009, 58(2), 1154 (in Chinese).
王海燕, 祝文军, 邓小良, 等. 物理学报, 2009, 58(2), 1154.
14 Xiang X. Effects of Fe and C doping on the helium behavior in aluminum. Master’s Thesis, China Academy of Engineering Physics, China, 2009 (in Chinese).
向鑫. Fe、C掺杂对铝中氦行为的影响. 硕士学位论文, 中国工程物理研究院, 2009.
15 Xiang X, Chen C A, Liu K Z, et al. Chinese Journal of Rare Metals, 2009, 33(4), 510 (in Chinese).
向鑫, 陈长安, 刘柯钊, 等. 稀有金属, 2009, 33(4), 510.
16 Xiao Y. Effect of grain size or gallium doping on the behavior of helium in aluminum. Master’s Thesis, China Academy of Engineering Physics, China, 2020 (in Chinese).
肖瑶. 晶粒尺寸与掺杂金属镓对铝中氦行为的影响. 硕士学位论文, 中国工程物理研究院, 2020.
17 Stoller R E, Toloczko M B, Was G S, et al. Nuclear Instrument and Methods in Physics Research B, 2013, 310, 75.
18 Wei Q M, Wang Y Q, Nastasi M, et al. Philosophical Magazine, 2011, 91(4), 553.
19 Singh B N, Trinkaus H. Journal of Nuclear Materials, 1992, 186(2), 153.
20 Gruber E E. Journal of Applied Physics, 1967, 38(1), 243.
21 Schroeder H, Fichtner P F P. Journal of Nuclear Materials, 1991, 179, 1007.
22 Wei Q M, Li N, Sun K, et al. Scripta Materialia, 2010, 63(4), 430.
23 Yan Z, Liu S, Xia S, et al. Journal of Nuclear Materials, 2018, 505, 200.
24 Tyler S K, Goodhew P J. Journal of Nuclear Materials, 1983, 113(1), 14.
25 Yamakawa K, Mukouda I, Shimomura Y. Journal of Nuclear Materials, 1992, 191-194, 396.
26 Goodhew P J. Journal of Nuclear Materials, 1981, 98(1-2), 221.
27 Ofan A, Zhang L, Gaathon O, et al. Physical Review B, 2010, 82, 104113.
28 Thomas G J. Radiation Effects and Defects in Solids, 1983, 78(1-4), 37.
29 Mansoori G A, Carnahan N F, Starling K E, et al. The Journal of Chemical Physics, 1971, 54(4), 1523.
30 Brearley I R, Macinnes D A. Journal of Nuclear Materials, 1980, 95(3), 239.
31 Was G S. Fundamentals of radiation materials science-Metals and alloys, Springer-Verlag Inc, USA, 2007.
32 Jager W, Manzke R, Trinkaus H, et al. Journal of Nuclear Materials, 1982, 111-112(1), 674.
33 Trinkaus H. Journal of Nuclear Materials, 2003, 318, 234.
34 Sen H S, Polcar T. Journal of Nuclear Materials, 2021, 555(1), 153133.
35 Demkowicz M J, Misra A, Caro A. Current Opinion in Solid State and Materials Science, 2012, 16(3), 101.
[1] 左志东, 刘先斌, 刘吉波, 汪小锋, 陈剑斌. 汽车用2024-T351铝合金的动态力学行为各向异性[J]. 材料导报, 2024, 38(8): 22080196-9.
[2] 汪愿, 孙运刚, 符彬, 刘文浩, 宣善勇, 刘鹏. 基于VARI工艺的碳纤维复合材料快速修理飞机铝合金裂纹的研究[J]. 材料导报, 2024, 38(6): 22020135-6.
[3] 张京京, 易幼平, 黄始全, 何海林, 董非, 王当. 2195铝合金中温变形条件下的静态再结晶机理及动力学[J]. 材料导报, 2024, 38(4): 22040369-9.
[4] 侯娟, 刘慧, 陈亮, 闵师领, 蒋梦蕾. 选区激光熔化成形304L不锈钢氦泡长大与辐照硬化行为[J]. 材料导报, 2024, 38(2): 22050298-6.
[5] 李雪伍, 杜少盟, 闫佳洋, 石甜. 铝合金超疏水表面制备方法及防腐应用研究现状[J]. 材料导报, 2024, 38(19): 23030276-10.
[6] 张彪, 刘家招, 杨鑫三, 孙宇萱. 基于XFEM的汽车铝合金断裂行为表征[J]. 材料导报, 2024, 38(19): 22100262-5.
[7] 蔡佳思, 刘湘波, 王新元, 魏艳红. 强制流动下铝铜合金激光焊接熔池凝固过程组织演化模拟[J]. 材料导报, 2024, 38(19): 23060085-7.
[8] 罗广瑞, 吴子彬, 长海博文, 翁文凭, 王东涛, 李一峰, 毛志福, 董鑫, 冯志鑫, 陈希, 张海涛, 朱慧颖, 张波. 车用铝合金弯曲成形回弹行为研究进展[J]. 材料导报, 2024, 38(18): 23030082-10.
[9] 邱飒蔚, 雷贝, 叶拓, 张越, 蒋家传, 王涛. 铝合金自冲铆疲劳性能及寿命预测[J]. 材料导报, 2024, 38(18): 24030108-7.
[10] 刘书俊, 肖文龙, 杨昌一, 吴舒凡. 激光粉末床熔融增材制造耐热铝合金的研究进展[J]. 材料导报, 2024, 38(18): 24080026-9.
[11] 邱飒蔚, 蒋家传, 叶拓, 张越, 雷贝, 王涛. AA7075-T6铝合金电阻点焊工艺参数优化研究[J]. 材料导报, 2024, 38(17): 23120177-8.
[12] 王梦强, 陈留刚, 孙红刚, 杜一昊, 司瑶晨, 李红霞. 镁铝合金添加剂对SiC-MgAl2O4材料显微结构和性能的影响[J]. 材料导报, 2024, 38(16): 23050121-6.
[13] 许玉婷, 李玉泽, 王建元. 选区激光熔化铝合金及其复合材料的研究进展[J]. 材料导报, 2024, 38(15): 23100101-13.
[14] 徐泽, 徐振, 吕哲, 宋华, 陈庆强. Y对6082铝合金铸轧板微观结构及性能的影响[J]. 材料导报, 2024, 38(15): 23080147-6.
[15] 张志强, 贺世伟, 李涵茜, 路学成, 张天刚, 王浩. 激光与CMT+P电弧复合增材工艺对2024铝合金气孔缺陷的影响规律[J]. 材料导报, 2024, 38(14): 23040011-9.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed