Abstract: In the work, the evolution behavior of helium bubbles in nuclear-grade 6061-Al alloy was studied by 190 keV He ion irradiation at room temperature with irradiation fluences of 2×1015 cm-2, 1×1016 cm-2, 1×1017 cm-2 and 2×1017 cm-2, respectively. The surface damage and he-lium bubbles induced by ion irradiation were characterized combining scanning electron microscopy (SEM), atomic force microscopy (AFM) and transmission electron microscopy (TEM). The surface blistering is found to increase obviously with the increasing fluences which contributes to the increasing roughness. Preliminary calculation shows that most of the incident He contribute to the surface blistering while only a small fraction are distributed in the material matrix to form uniform helium bubbles. With the increasing fluences, the He bubble size first remains stable which is independent of fluence, and then increases significantly at higher fluences. Compared with the bubble size change, the bubble density undergoes increase hereafter decrease. In addition, preferential aggregation and growth of helium bubbles on precipitates and grain boundaries which act as the favorable sites for bubble formation were observed. The study of the evolution behavior of helium bubbles is of great significance for fundamental research and understanding the degradation of macroscopic mechanical properties and possible irradiation failure behavior of aluminum alloy in the research reactor.
1 Soria S R, Tolley A J, Sánchez E A. Procedia Materials Science, 2015, 8(1), 486. 2 Trinkaus H. Journal of Nuclear Materials, 1985, 133-134, 105. 3 Trinkaus H, Singh B N. Journal of Nuclear Materials, 2003, 323(2-3), 229. 4 Schroeder H, Fichtner P F P. Journal of Nuclear Materials, 1991, 179-183(3), 1007. 5 Chen C A. The study of He behavior in aluminum and stainless steels. Ph. D. Thesis, China Academy of Engineering Physics, China, 2003 (in Chinese). 陈长安. 铝和不锈钢中氦行为研究. 博士学位论文, 中国工程物理研究院, 2003. 6 Ono K, Inoue M, Kino T, et al. Journal of Nuclear Materials, 1985, 133-134(1), 477. 7 Furuno S, Hojou K, Izui K, et al. Journal of Nuclear Materials, 1988, 155-157, 1149. 8 Wang H Y, Zhu W J, Song Z F, et al. Acta Physica Sinica, 2008, 57(6), 3703 (in Chinese). 王海燕, 祝文军, 宋振飞, 等. 物理学报, 2008, 57(6), 3703. 9 Soria S R, Tolley A, Sánchez E A. Journal of Nuclear Materials, 2015, 467, 357. 10 Kamigaki N, Furuno S, Hojou K, et al. Journal of Nuclear Materials, 1991, 179-181, 970. 11 Kamigaki N, Furuno S, Hojou K, et al. Journal of Nuclear Materials, 1992, 191-194, 1214. 12 Cheng Y M, Chen H, Shen Q, et al. Atomic Energy Science and Techno-logy, 2018, 52(3), 385 (in Chinese). 程扬名, 陈浩, 沈琴, 等. 原子能科学技术, 2018, 52(3), 385. 13 Wang H Y, Zhu W J, Deng X L, et al. Acta Physica Sinica, 2009, 58(2), 1154 (in Chinese). 王海燕, 祝文军, 邓小良, 等. 物理学报, 2009, 58(2), 1154. 14 Xiang X. Effects of Fe and C doping on the helium behavior in aluminum. Master’s Thesis, China Academy of Engineering Physics, China, 2009 (in Chinese). 向鑫. Fe、C掺杂对铝中氦行为的影响. 硕士学位论文, 中国工程物理研究院, 2009. 15 Xiang X, Chen C A, Liu K Z, et al. Chinese Journal of Rare Metals, 2009, 33(4), 510 (in Chinese). 向鑫, 陈长安, 刘柯钊, 等. 稀有金属, 2009, 33(4), 510. 16 Xiao Y. Effect of grain size or gallium doping on the behavior of helium in aluminum. Master’s Thesis, China Academy of Engineering Physics, China, 2020 (in Chinese). 肖瑶. 晶粒尺寸与掺杂金属镓对铝中氦行为的影响. 硕士学位论文, 中国工程物理研究院, 2020. 17 Stoller R E, Toloczko M B, Was G S, et al. Nuclear Instrument and Methods in Physics Research B, 2013, 310, 75. 18 Wei Q M, Wang Y Q, Nastasi M, et al. Philosophical Magazine, 2011, 91(4), 553. 19 Singh B N, Trinkaus H. Journal of Nuclear Materials, 1992, 186(2), 153. 20 Gruber E E. Journal of Applied Physics, 1967, 38(1), 243. 21 Schroeder H, Fichtner P F P. Journal of Nuclear Materials, 1991, 179, 1007. 22 Wei Q M, Li N, Sun K, et al. Scripta Materialia, 2010, 63(4), 430. 23 Yan Z, Liu S, Xia S, et al. Journal of Nuclear Materials, 2018, 505, 200. 24 Tyler S K, Goodhew P J. Journal of Nuclear Materials, 1983, 113(1), 14. 25 Yamakawa K, Mukouda I, Shimomura Y. Journal of Nuclear Materials, 1992, 191-194, 396. 26 Goodhew P J. Journal of Nuclear Materials, 1981, 98(1-2), 221. 27 Ofan A, Zhang L, Gaathon O, et al. Physical Review B, 2010, 82, 104113. 28 Thomas G J. Radiation Effects and Defects in Solids, 1983, 78(1-4), 37. 29 Mansoori G A, Carnahan N F, Starling K E, et al. The Journal of Chemical Physics, 1971, 54(4), 1523. 30 Brearley I R, Macinnes D A. Journal of Nuclear Materials, 1980, 95(3), 239. 31 Was G S. Fundamentals of radiation materials science-Metals and alloys, Springer-Verlag Inc, USA, 2007. 32 Jager W, Manzke R, Trinkaus H, et al. Journal of Nuclear Materials, 1982, 111-112(1), 674. 33 Trinkaus H. Journal of Nuclear Materials, 2003, 318, 234. 34 Sen H S, Polcar T. Journal of Nuclear Materials, 2021, 555(1), 153133. 35 Demkowicz M J, Misra A, Caro A. Current Opinion in Solid State and Materials Science, 2012, 16(3), 101.