Please wait a minute...
材料导报  2024, Vol. 38 Issue (1): 22030107-7    https://doi.org/10.11896/cldb.22030107
  金属与金属基复合材料 |
氦离子辐照下6061-Al合金中的氦泡行为研究
闫占峰*, 郑健, 周韦, 王浩
中国工程物理研究院核物理与化学研究所,四川 绵阳 621900
Helium Bubble Behavior in 6061-Aluminum Alloys Under Helium Ion Irradiation
YAN Zhanfeng*, ZHENG Jian, ZHOU Wei, WANG Hao
Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, Sichuan, China
下载:  全 文 ( PDF ) ( 23785KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过室温下的He离子辐照来研究核级6061-Al合金中氦泡的演变行为,辐照剂量为2×1015 cm-2、1×1016 cm-2、1×1017 cm-2和2×1017 cm-2,通过扫描电镜(SEM)和原子力显微镜(AFM)来表征分析辐照后铝合金表面的损伤情况,并通过透射电镜(TEM)表征辐照产生的氦泡等微观缺陷。结果表明,辐照后铝合金产生了表面损伤,表面起泡程度和粗糙度随着He辐照剂量的增加而明显增大。初步计算表明,入射的He大部分都用于形成表面起泡,只有少数分布在基体内形成均匀的氦泡。随着辐照剂量的增加,基体内氦泡的尺寸先保持不变,然后显著增加,而氦泡密度则先增加后降低。另外,还观察到氦泡在析出物和晶界上发生了偏向性聚集和长大。本工作对深入认识铝合金在研究堆内面临的宏观力学性能退化以及可能的辐照失效行为具有重要意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
闫占峰
郑健
周韦
王浩
关键词:  铝合金  氦泡  氦离子辐照  表面起泡  析出物    
Abstract: In the work, the evolution behavior of helium bubbles in nuclear-grade 6061-Al alloy was studied by 190 keV He ion irradiation at room temperature with irradiation fluences of 2×1015 cm-2, 1×1016 cm-2, 1×1017 cm-2 and 2×1017 cm-2, respectively. The surface damage and he-lium bubbles induced by ion irradiation were characterized combining scanning electron microscopy (SEM), atomic force microscopy (AFM) and transmission electron microscopy (TEM). The surface blistering is found to increase obviously with the increasing fluences which contributes to the increasing roughness. Preliminary calculation shows that most of the incident He contribute to the surface blistering while only a small fraction are distributed in the material matrix to form uniform helium bubbles. With the increasing fluences, the He bubble size first remains stable which is independent of fluence, and then increases significantly at higher fluences. Compared with the bubble size change, the bubble density undergoes increase hereafter decrease. In addition, preferential aggregation and growth of helium bubbles on precipitates and grain boundaries which act as the favorable sites for bubble formation were observed. The study of the evolution behavior of helium bubbles is of great significance for fundamental research and understanding the degradation of macroscopic mechanical properties and possible irradiation failure behavior of aluminum alloy in the research reactor.
Key words:  aluminum alloys    He bubble    helium ion irradiation    surface blister    precipitates
发布日期:  2024-01-16
ZTFLH:  TL341  
基金资助: 国防科工局核能开发项目
通讯作者:  闫占峰,2015年6月、2020年7月分别于中国科学技术大学和北京大学获得工学学士学位和博士学位。现为中国工程物理研究院核物理与化学研究所助理研究员,目前主要研究领域为核能材料的辐照损伤效应,在Acta Materialia、Journal of Nuclear Materials等SCI期刊发表多篇论文。zhanfengyan@pku.edu.cn   
引用本文:    
闫占峰, 郑健, 周韦, 王浩. 氦离子辐照下6061-Al合金中的氦泡行为研究[J]. 材料导报, 2024, 38(1): 22030107-7.
YAN Zhanfeng, ZHENG Jian, ZHOU Wei, WANG Hao. Helium Bubble Behavior in 6061-Aluminum Alloys Under Helium Ion Irradiation. Materials Reports, 2024, 38(1): 22030107-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22030107  或          http://www.mater-rep.com/CN/Y2024/V38/I1/22030107
1 Soria S R, Tolley A J, Sánchez E A. Procedia Materials Science, 2015, 8(1), 486.
2 Trinkaus H. Journal of Nuclear Materials, 1985, 133-134, 105.
3 Trinkaus H, Singh B N. Journal of Nuclear Materials, 2003, 323(2-3), 229.
4 Schroeder H, Fichtner P F P. Journal of Nuclear Materials, 1991, 179-183(3), 1007.
5 Chen C A. The study of He behavior in aluminum and stainless steels. Ph. D. Thesis, China Academy of Engineering Physics, China, 2003 (in Chinese).
陈长安. 铝和不锈钢中氦行为研究. 博士学位论文, 中国工程物理研究院, 2003.
6 Ono K, Inoue M, Kino T, et al. Journal of Nuclear Materials, 1985, 133-134(1), 477.
7 Furuno S, Hojou K, Izui K, et al. Journal of Nuclear Materials, 1988, 155-157, 1149.
8 Wang H Y, Zhu W J, Song Z F, et al. Acta Physica Sinica, 2008, 57(6), 3703 (in Chinese).
王海燕, 祝文军, 宋振飞, 等. 物理学报, 2008, 57(6), 3703.
9 Soria S R, Tolley A, Sánchez E A. Journal of Nuclear Materials, 2015, 467, 357.
10 Kamigaki N, Furuno S, Hojou K, et al. Journal of Nuclear Materials, 1991, 179-181, 970.
11 Kamigaki N, Furuno S, Hojou K, et al. Journal of Nuclear Materials, 1992, 191-194, 1214.
12 Cheng Y M, Chen H, Shen Q, et al. Atomic Energy Science and Techno-logy, 2018, 52(3), 385 (in Chinese).
程扬名, 陈浩, 沈琴, 等. 原子能科学技术, 2018, 52(3), 385.
13 Wang H Y, Zhu W J, Deng X L, et al. Acta Physica Sinica, 2009, 58(2), 1154 (in Chinese).
王海燕, 祝文军, 邓小良, 等. 物理学报, 2009, 58(2), 1154.
14 Xiang X. Effects of Fe and C doping on the helium behavior in aluminum. Master’s Thesis, China Academy of Engineering Physics, China, 2009 (in Chinese).
向鑫. Fe、C掺杂对铝中氦行为的影响. 硕士学位论文, 中国工程物理研究院, 2009.
15 Xiang X, Chen C A, Liu K Z, et al. Chinese Journal of Rare Metals, 2009, 33(4), 510 (in Chinese).
向鑫, 陈长安, 刘柯钊, 等. 稀有金属, 2009, 33(4), 510.
16 Xiao Y. Effect of grain size or gallium doping on the behavior of helium in aluminum. Master’s Thesis, China Academy of Engineering Physics, China, 2020 (in Chinese).
肖瑶. 晶粒尺寸与掺杂金属镓对铝中氦行为的影响. 硕士学位论文, 中国工程物理研究院, 2020.
17 Stoller R E, Toloczko M B, Was G S, et al. Nuclear Instrument and Methods in Physics Research B, 2013, 310, 75.
18 Wei Q M, Wang Y Q, Nastasi M, et al. Philosophical Magazine, 2011, 91(4), 553.
19 Singh B N, Trinkaus H. Journal of Nuclear Materials, 1992, 186(2), 153.
20 Gruber E E. Journal of Applied Physics, 1967, 38(1), 243.
21 Schroeder H, Fichtner P F P. Journal of Nuclear Materials, 1991, 179, 1007.
22 Wei Q M, Li N, Sun K, et al. Scripta Materialia, 2010, 63(4), 430.
23 Yan Z, Liu S, Xia S, et al. Journal of Nuclear Materials, 2018, 505, 200.
24 Tyler S K, Goodhew P J. Journal of Nuclear Materials, 1983, 113(1), 14.
25 Yamakawa K, Mukouda I, Shimomura Y. Journal of Nuclear Materials, 1992, 191-194, 396.
26 Goodhew P J. Journal of Nuclear Materials, 1981, 98(1-2), 221.
27 Ofan A, Zhang L, Gaathon O, et al. Physical Review B, 2010, 82, 104113.
28 Thomas G J. Radiation Effects and Defects in Solids, 1983, 78(1-4), 37.
29 Mansoori G A, Carnahan N F, Starling K E, et al. The Journal of Chemical Physics, 1971, 54(4), 1523.
30 Brearley I R, Macinnes D A. Journal of Nuclear Materials, 1980, 95(3), 239.
31 Was G S. Fundamentals of radiation materials science-Metals and alloys, Springer-Verlag Inc, USA, 2007.
32 Jager W, Manzke R, Trinkaus H, et al. Journal of Nuclear Materials, 1982, 111-112(1), 674.
33 Trinkaus H. Journal of Nuclear Materials, 2003, 318, 234.
34 Sen H S, Polcar T. Journal of Nuclear Materials, 2021, 555(1), 153133.
35 Demkowicz M J, Misra A, Caro A. Current Opinion in Solid State and Materials Science, 2012, 16(3), 101.
[1] 李欢, 刘千喜, 曹彪, 张长鑫, 钱利勤, 周亢. 铝/铜超声波焊接与连接的研究进展[J]. 材料导报, 2023, 37(S1): 23040197-11.
[2] 沈士泰, 陈雨晨, 卫国英, 朱本峰. CeO2/铝合金自修复阳极氧化复合膜的电化学制备及表面性能[J]. 材料导报, 2023, 37(S1): 23030301-5.
[3] 陈海燕, 王超, 潘美诗, 吉西西, 曾越, 安义博, 邹燕成. Zn-Al合金超声空化数值模拟和细晶强化机理研究[J]. 材料导报, 2023, 37(7): 21090048-6.
[4] 刘文憬, 李元东, 宋赵熙, 毕广利, 杨昊坤, 曹杨婧. Sr+Er复合变质对AlSi10MnMg合金微观组织、导热及力学性能的影响[J]. 材料导报, 2023, 37(6): 21090239-7.
[5] 张忠科, 蒋常铭, 李轩柏, 熊建强, 童辉. 汽车用铝钢无匙孔搅拌摩擦点焊接头组织及界面特征研究[J]. 材料导报, 2023, 37(5): 21070281-6.
[6] 李丹, 王启伟, 韩国峰, 张保国, 朱胜, 李卫. 横向交变磁场对铝合金电弧增材成形组织与性能的影响[J]. 材料导报, 2023, 37(4): 21050158-6.
[7] 蔡达, 王立世, 胡心彬. AA5052铝合金/AZ31B镁合金搅拌摩擦焊接头的腐蚀行为研究[J]. 材料导报, 2023, 37(4): 21040318-7.
[8] 张兵宪, 陈聪, 刘丰刚, 牛鹏亮, 刘强, 黄春平. 7050-T7451铝合金搅拌摩擦焊接头组织和性能[J]. 材料导报, 2023, 37(24): 22030282-5.
[9] 张焯栋, 赵君文, 范军, 张海成, 高杰维, 韩瑞鹏. 缺口对7A85铝合金拉伸性能和疲劳性能的影响[J]. 材料导报, 2023, 37(24): 22080021-7.
[10] 耿汝伟, 程延海, 杜军, 魏正英. 2319铝合金电弧增材制造温度场与应力演变研究[J]. 材料导报, 2023, 37(23): 22060214-8.
[11] 殷晓龙, 王志林, 王婉, 于贺春, 王汉斌, 闫文杰. 深冷挤出切削制备超细晶7075铝合金的组织、性能及时效行为研究[J]. 材料导报, 2023, 37(22): 22070192-6.
[12] 房洪杰, 刘慧, 孙杰, 张倩, 余琨. 5xxx系铝合金研究现状及发展趋势[J]. 材料导报, 2023, 37(21): 22010082-10.
[13] 杨东辉, 唐帅, 吴子彬, 秦克, 张海涛, 崔建忠, Hiromi Nagaumi. 高锌铝合金合金化和加工工艺的研究现状及发展趋势[J]. 材料导报, 2023, 37(2): 21010126-6.
[14] 陈轩, 李萌蘖, 卜恒勇, 左汉宁. 7系铝合金焊接技术的研究现状及展望[J]. 材料导报, 2023, 37(13): 21010106-9.
[15] 马国龙, 张志毅, 毛镇东, 李刚卿, 韩晓辉, 杨志斌. 高速列车用铝合金型材激光-MIG复合焊工艺特性和接头性能[J]. 材料导报, 2023, 37(12): 21110142-6.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed