Please wait a minute...
材料导报  2023, Vol. 37 Issue (23): 22090218-6    https://doi.org/10.11896/cldb.22090218
  无机非金属及其复合材料 |
相似材料抗压强度正交试验与材料强度影响系数研究
宋春鹏1,2, 由爽1,2,*, 纪洪广1,2, 孙利辉3
1 北京科技大学城市地下空间工程北京市重点实验室,北京 100083
2 北京科技大学土木与资源工程学院,北京 100083
3 河北工程大学矿业与测绘工程学院,河北 邯郸 056038
Orthogonal Test of Compressive Strength of Similar Materials and Influence Coefficient of Material Strength
SONG Chunpeng1,2, YOU Shuang1,2,*, JI Hongguang1,2, SUN Lihui3
1 Beijing Key Laboratory of Urban Underground Space Engineering, University of Science and Technology Beijing, Beijing 100083, China
2 School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
3 College of Mining and Geomatics Engineering, Hebei University of Engineering, Handan 056038, Hebei, China
下载:  全 文 ( PDF ) ( 2746KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了研究不同原材料对相似材料单轴抗压强度的影响规律,以ISO标准砂、细河沙为骨料,水泥、石膏、腻子粉为胶结材料,制备了砂水石体系、沙水石体系、沙粉石体系的相似材料,通过正交实验法、力学性能测试法、回归分析法、最小二乘曲线拟合法等实验手段,研究了三种相似材料配合比及不同配合比下的力学性能表征。结果表明,不同原材料的属性直接决定了相似材料的力学性能,胶结材料会对相似材料单轴抗压强度产生正相关影响,骨料会对相似材料单轴抗压强度产生负相关影响;沙水石体系的单轴抗压强度与砂水石体系的单轴抗压强度相差约42%,沙粉石体系的单轴抗压强度与沙水石体系的单轴抗压强度相差约344%。通过多元回归性分析得到了适用于砂水石体系、沙水石体系、沙粉石体系的单轴抗压强度经验公式,在此基础上,定义了一种影响相似材料单轴抗压强度的强度影响系数,实现了原材料与相似材料单轴抗压强度之间的量化表征,最终明确沙粉石体系为三种体系中最优体系。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋春鹏
由爽
纪洪广
孙利辉
关键词:  相似材料  单轴抗压强度  回归分析  强度影响系数    
Abstract: In order to study the effect of different raw materials on the uniaxial compressive strength of similar materials, using ISO standard sand and fine river sand as aggregates, and cement, gypsum, and putty powder as cementing materials, a sand-water stone system, sand-water stone system, and sand powder were prepared. For similar materials in the stone system, the mechanical properties characterization of three similar materials with different mixing ratios were studied by orthogonal experiment method, mechanical property testing method, regression analysis method, least square curve fitting method and other experimental methods. It is found that the properties of different raw materials directly determine the mechanical properties of similar materials, cementing materials will have a positive correlation with the uniaxial compressive strength of similar materials, and aggregates will have a negative correlation with the uniaxial compressive strength of similar materials. The difference between the uniaxial compressive strength of the sand-water stone system and the sand-water stone system was about 42%, and the uniaxial compressive strength of the sand-silt stone system was about 344% different from the uniaxial compressive strength of the sand-water stone system. The empirical formula of uniaxial compressive strength suitable for sand-water-stone system, sand-water-stone system and sand-dust-stone system is obtained through analysis. The quantitative characterization between the uniaxial compressive strength of the raw materials and similar materials finally made it clear that the sand and silt system is the optimal system among the three systems.
Key words:  similar material    uniaxial compressive strength    analysis of regression    strength influence factor
出版日期:  2023-12-10      发布日期:  2023-12-08
ZTFLH:  TU502  
基金资助: 国家自然科学基金(52074021)
通讯作者:  * 由爽,北京科技大学土木与资源工程学院教授、博士研究生导师。2006年辽宁科技大学土木工程专业本科毕业,2007年北京科技大学岩土工程专业硕士毕业,2011年北京科技大学岩土工程专业博士毕业。目前主要从事深部工程岩体多场耦合力学性能等方面的研究工作。在国内外重要学术期刊上公开发表学术论文17篇,包括Energy and Buildings、Applied Thermal Engineering、《煤炭学报》等,以第一发明人身份授权专利8项。youshuang@ustb.edu.cn   
作者简介:  宋春鹏,2020年6月于河北工程大学获得工学学士学位。现为北京科技大学土木与资源工程学院硕士研究生,在由爽教授的指导下进行研究。目前主要研究领域为岩土工程、深部岩石力学等。
引用本文:    
宋春鹏, 由爽, 纪洪广, 孙利辉. 相似材料抗压强度正交试验与材料强度影响系数研究[J]. 材料导报, 2023, 37(23): 22090218-6.
SONG Chunpeng, YOU Shuang, JI Hongguang, SUN Lihui. Orthogonal Test of Compressive Strength of Similar Materials and Influence Coefficient of Material Strength. Materials Reports, 2023, 37(23): 22090218-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22090218  或          http://www.mater-rep.com/CN/Y2023/V37/I23/22090218
1 Cai M F, Xue D L, Ren F H. Chinese Journal of Engineering, 2019, 41(4), 417(in Chinese).
蔡美峰, 薛鼎龙, 任奋华.工程科学学报, 2019, 41(4), 417.
2 He M C, Xie H P, Peng S P, et al. Chinese Journal of Rock Mechanics and Engineering, 2005(16), 2803(in Chinese).
何满潮, 谢和平, 彭苏萍, 等.岩石力学与工程学报, 2005(16), 2803.
3 Wang S J. Journal of Gansu Sciences, 2022, 34(4), 130(in Chinese).
王君顺.甘肃科学学报, 2022, 34(4), 130.
4 Lei Z D, Yan Z G. Chinese Journal of Underground Space and Enginee-ring, 2022, 18(3), 832 (in Chinese).
雷中岱, 闫治国.地下空间与工程学报, 2022, 18(3), 832.
5 Feng H, Zhu H, Xu Q, et al. Tunnelling and Underground Space Technology, 2013, 35, 207.
6 Miao X X, Cui X M, Wang J A, et al. Engineering Geology, 2011, 120, 32.
7 Xu W, Wu S Y, Yang C L, et al. Fly Ash CompRehensive Utilization, 2022, 36(4), 86(in Chinese).
徐伟, 吴述彧, 杨成龙, 等.粉煤灰综合利用, 2022, 36(4), 86.
8 Zuo B C, Chen C X, Liu C H. Rock and Soil Mechanics, 2004(11), 1805(in Chinese).
左保成, 陈从新, 刘才华.岩土力学, 2004(11), 1805.
9 Dai S H, Wang H R, Han R J, et al. Rock and Soil Mechanics, 2020 (S2), 1(in Chinese).
代树红, 王浩然, 韩荣军, 等.岩土力学, 2020 (S2), 1.
10 Wang K, Li S C, Zhang Q S, et al. Rock and Soil Mechanics, 2016, 37(9), 2521(in Chinese).
王凯, 李术才, 张庆松, 等.岩土力学, 2016, 37(9), 2521.
11 Sun W B,Zhang S C,Li Y Y, et al. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S1), 2665(in Chinese).
孙文斌, 张士川, 李杨杨, 等.岩石力学与工程学报, 2015, 34(S1), 2665.
12 Zhang Z J, Zhang Q Y, Xiang W, et al. Journal of Central South University (Science and Technology), 2021, 52(11), 4168(in Chinese).
张振杰, 张强勇, 向文, 等.中南大学学报(自然科学版), 2021, 52(11), 4168.
13 Chen J T, Yin L M, Sun W B, et al. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S2), 3956(in Chinese).
陈军涛, 尹立明, 孙文斌, 等.岩石力学与工程学报, 2015, 34(S2), 3956.
14 Wang P, Shu C, Shi F, et al. Rock and Soil Mechanics, 2017, 38(S2), 229(in Chinese).
王鹏, 舒才, 施峰, 等.岩土力学, 2017, 38(S2), 229.
15 Wang H P, Zhang B, Yuan L, et al. Journal of China University of Mi-ning & Technology, 2021, 50(1), 99(in Chinese).
王汉鹏, 张冰, 袁亮, 等.中国矿业大学学报, 2021, 50(1), 99.
16 Wen C X, Jia S P, Fu X F, et al. Advances in Materials Science and Engineering, 2020, 2020, 2031276.
17 Ma C Y, Zhu Z G, Fang Z C, et al. Advances in Materials Science and Engineering, 2021, 2021, 6590779.
18 Yang M Z, Yang Y, Zhao B, et al. Shock and Vibration, 2021, 2021, 6657323.
19 Zhao B C, Ma Y X, Guo Y X, et al. Advances in Materials Science and Engineering, 2021, 2021, 9736900.
20 Shi X M, Liu B G, Xiao J. Rock and Soil Mechanics, 2015, 36(5), 1357(in Chinese).
史小萌, 刘保国, 肖杰.岩土力学, 2015, 36(5), 1357.
21 Shi X M, Liu B G, Qi Y. Rock and Soil Mechanics, 2015, 36(9), 2624 (in Chinese).
史小萌, 刘保国, 亓轶.岩土力学, 2015, 36(9), 2624.
22 Zhao P X, Kang X P, Li S G, et al. Journal of Xi'an University of Science and Technology, 2020, 40(4), 580(in Chinese).
赵鹏翔, 康新朋, 李树刚, 等.西安科技大学学报, 2020, 40(4), 580.
23 Kang X T, Huang G, Deng B Z, et al. Journal of Northeastern University (Natural Science), 2015, 36(1), 138(in Chinese).
康向涛, 黄滚, 邓博知, 等.东北大学学报(自然科学版), 2015, 36(1), 138.
24 Wang J N,Dou Y M,Li B C,et al. Water Resources and Hydropower Engineering, 2018, 49(8), 177(in Chinese).
王建宁, 窦远明, 李炳晨,等.水利水电技术, 2018, 49(8), 177.
25 Huang Z, Li X Z, Li S J, et al. Journal of Central South University (Science and Technology), 2018, 49(12), 3029(in Chinese).
黄震, 李晓昭, 李仕杰, 等.中南大学学报(自然科学版), 2018, 49(12), 3029.
26 Xu Z L, Luo Y B, Chen J X, et al. Construction and Building Materials, 2021, 300, 123960.
27 Sun H T, Zhu M R, Cao J, et al. Coal Science and Technology, 2019, 47(8), 116(in Chinese).
孙海涛, 朱墨然, 曹偈, 等.煤炭科学技术, 2019, 47(8), 116.
28 Luo F, Yang B S, Hao B B, et al. Journal of Mining & Safety Engineering, 2013, 30(1), 93(in Chinese).
洛锋, 杨本生, 郝彬彬, 等.采矿与安全工程学报, 2013, 30(1), 93.
29 Hu J Q, Li X Q, Zhang L X, et al. Henan Science and Technology, 2022, 41(18), 51(in Chinese).
胡俊卿, 李旭庆, 张立宪, 等.河南科技, 2022, 41(18), 51.
30 Zhao B C, Ma Y X, Guo Y X, et al. Mining Safety & Environmental Protection, 2022, 49(3), 9(in Chinese).
赵兵朝, 马云祥, 郭亚欣, 等.矿业安全与环保, 2022, 49(3), 9.
[1] 王占营, 马颖, 安守静, 孙乐. 电解液配方对纯镁微弧氧化膜层耐蚀性的影响[J]. 材料导报, 2023, 37(15): 21100085-10.
[2] 梁存光,李新梅. 基于灰色关联分析与回归分析WC-12Co涂层工艺参数的多目标优化[J]. 《材料导报》期刊社, 2018, 32(10): 1752-1756.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed