Please wait a minute...
材料导报  2022, Vol. 36 Issue (Z1): 22030119-5    
  无机非金属及其复合材料 |
沉积温度对等离子喷涂金属支撑型固体氧化物燃料电池结构及电化学性能的影响
陈丹1, 宋琛2, 杜柯2, 郭宇2, 刘志义1, 刘太楷2, 刘敏2
1 中南大学材料科学与工程学院,长沙 410083
2 广东省科学院新材料研究所,现代材料表面工程技术国家工程实验室,广东省现代表面工程技术重点实验室,广州 510650
Influence of Deposition Temperature on Structural and Electrochemical Performance of Plasma-sprayed Metal-supported Solid Oxide Fuel Cell
CHEN Dan1, SONG Chen2, DU Ke2, GUO Yu2, LIU Zhiyi1, LIU Taikai2, LIU Min3
1 School of Materials Science and Engineering, Central South University, Changsha 410083, China
2 National Engineering Laboratory for Modern Materials Surface Engineering Technology, Key Lab of Guangdong for Modern Surface Engineering Technology, Institute of New Materials,Guangdong Academy of Sciences, Guangzhou 510650, China
下载:  全 文 ( PDF ) ( 15419KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为提高大气等离子喷涂(APS)制备金属支撑型固体氧化物燃料电池在中低温下的输出性能,本工作采用APS在不锈钢基体上制备基于氧化钪稳定氧化锆(ScSZ)电解质的固体氧化物燃料电池,控制喷涂时的沉积温度分别为100 ℃、300 ℃和600 ℃,通过扫描电子显微镜(SEM)观察单个ScSZ粒子沉积状态和涂层微观形貌,并用电化学工作站测试单电池的输出性能和交流阻抗谱。结果表明,随着沉积温度升高,ScSZ沉积粒子由溅射状铺展转变为圆盘状铺展,单个粒子中的裂纹密度逐渐减小,裂纹所占面积比从9.75%降低到5.73%。组装成单电池后,电解质涂层与阳极和阴极结合良好。ScSZ涂层内部片层结合情况随沉积温度的升高而得到改善,裂纹减少且孔隙尺寸减小,涂层孔隙率从12.29%降低到7.72%。电化学测试结果表明,当沉积温度从100 ℃升高到600 ℃,电解质的欧姆电阻降低了1/2,电池的输出性能显著提升。600 ℃的沉积温度制备的单电池在800 ℃时的最大功率密度为0.998 W/cm2,欧姆阻抗为0.076 Ω·cm2
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈丹
宋琛
杜柯
郭宇
刘志义
刘太楷
刘敏
关键词:  金属支撑固体氧化物燃料电池  大气等离子喷涂  沉积温度  氧化钪掺杂氧化锆  电解质涂层    
Abstract: This research aims to improve the output performance of the metal-supported solid oxide fuel cell prepared by atmospheric plasma spraying (APS). Specifically, solid oxide fuel cells based on scandia doped zirconia (ScSZ) electrolytes were deposited on stainless-steel substrates by APS. The deposition temperature during spraying was controlled to be 100 ℃, 300 ℃ and 600 ℃, respectively. The deposition states of individual ScSZ particle and the microstructures of ScSZ coatings were characterized by a scanning electron microscopy (SEM). The output performance and AC impedance spectrum of the single-cell were tested by an electrochemical workstation. The results show that with the increase of deposition temperature, ScSZ particles changed from sputtering to disc-shaped spread. The density of cracks in a single particle gradually decreased, and the area ratio of cracks reduced from 9.75% to 5.73%. After assembling into single cells, the electrolytes were well combined with the anode and cathode. In addition, the interlamellar bonding in the ScSZ coating was improved with the increasing deposition temperature. Both sizes of cracks and pores were reduced, and the porosity of the coating decreased from 12.29% to 7.72%. The electrochemical test results showed that as the deposition temperature increased from 100 ℃ to 600 ℃, the ohmic resistance of the electrolyte was reduced by half, and the output performance of the cell was significantly improved. The maximum power density and the ohmic impedance of the single-cell prepared on the substrate at 600 ℃ were 0.998 W/cm2 and 0.076 Ω·cm2 at 800 ℃, respectively.
Key words:  metal-supported solid oxide fuel cell    atmospheric plasma spraying    deposition temperature    scandia doped zirconia    electrolyte coating
出版日期:  2022-06-05      发布日期:  2022-06-08
ZTFLH:  TK91  
基金资助: 广东省基础与应用基础研究基金(2022A1515010682;2021A1515110260);广州市科技计划项目(202007020008); 广东特支计划(2019BT02C629)
通讯作者:  phd.songchen@gmail.com   
作者简介:  陈丹,2019年6月于东北大学大学获得工学学士学位。现为中南大学材料科学与工程学院硕士研究生,在刘志义教授和刘敏教授的指导下进行研究。目前主要研究领域为等离子喷涂制备固体氧化物燃料电池。
宋琛,广东省科学院新材料研究所博士,2018年博士毕业于法国勃艮第-弗朗什孔泰大学(国家留学基金委资助)。目前主要从事热喷涂金属支撑型固体氧化物燃料电池研究工作。先后主持广东省青年优秀人才国际培养博士后项目、广东省基金面上项目、广东省区域联合青年基金项目、广东省科学院千名博士(后)引进专项,参与973计划、国家重点研发计划、广东省国际科技合作基地项目、广州市重点科技计划等项目。发表学术论文31篇(其中SCI论文19篇),申请中国/PCT专利27项,授权10项。担任本领域Surface & Coatings Technology, Journal of the European Ceramic Society等权威期刊审稿人。
引用本文:    
陈丹, 宋琛, 杜柯, 郭宇, 刘志义, 刘太楷, 刘敏. 沉积温度对等离子喷涂金属支撑型固体氧化物燃料电池结构及电化学性能的影响[J]. 材料导报, 2022, 36(Z1): 22030119-5.
CHEN Dan, SONG Chen, DU Ke, GUO Yu, LIU Zhiyi, LIU Taikai, LIU Min. Influence of Deposition Temperature on Structural and Electrochemical Performance of Plasma-sprayed Metal-supported Solid Oxide Fuel Cell. Materials Reports, 2022, 36(Z1): 22030119-5.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2022/V36/IZ1/22030119
1 Shabri H A, Othman M H D, Mohamed M A, et al. Fuel Processing Technology, 2021, 212, 106626.
2 Zhao Y, Xia C, Jia L, et al. International Journal of Hydrogen Energy, 2013, 38(36), 16498.
3 Chen Y Y, Wei W C J. Solid State Ionics, 2006, 177(3), 351.
4 Irshad M, Siraj K, Raza R, et al. Applied Sciences, 2016, 6(3), 75.
5 Wang Z, Zeng Y, Li C, et al. Ceramics International, 2018, 44(9), 10328.
6 Huang J, Xie F, Wang C, et al. International Journal of Hydrogen Energy, 2012, 37(1), 877.
7 Sinha A, Miller D N, Irvine J T S. Journal of Materials Chemistry A, 2016, 4(28), 11117.
8 da Silva F S, de Souza T M. International Journal of Hydrogen Energy, 2017, 42(41), 26020.
9 Syed A A, Ilhan Z, Arnold J, et al. Journal of Thermal Spray Technology, 2006, 15(4), 617.
10 Singhal S C, Kendall K. Materials Today, 2002, 5(12), 55.
11 Yamamoto O. Electrochimica Acta, 2000, 45(15), 2423.
12 徐宏, 薛倩楠, 张建星, 等. 中国稀土学报, 2016, 34(6), 739.
13 Sun W, Zhang N, Mao Y, et al. Electrochemistry Communications, 2012, 20, 117.
14 Hedayat N, Panthi D, Du Y. Electrochimica Acta, 2017, 258, 694.
15 Yuan K, Song C, Chen G, et al. International Journal of Hydrogen Energy, 2021, 46(15), 9749.
16 Li C J, Li C X, Xing Y Z, et al. Solid State Ionics, 2006, 177(19-25), 2065.
17 Marcano D, Mauer G, Vaßen R, et al. Surface and Coatings Technology, 2017, 318, 170.
18 Zhang S L, Li C X, Li C J. Journal of Fuel Cellence & Technology, 2014, 11(3), 031005.
19 Ning X J, Li C X, Li C J, et al. Materials Science and Engineering: A, 2006, 428(1), 98.
20 Li C J, Yang G J, Li C X. Journal of Thermal Spray Technology, 2013, 22(2-3), 192.
21 Minh N Q. Journal of the American Ceramic Society, 1993, 76(3), 563.
22 陈书赢, 马国政, 王海斗, 等. 稀有金属材料与工程, 2017, 46(11), 3564.
23 Gupta M, Weber A, Markocsan N, et al. Journal of the Electrochemical Society, 2016, 163(9), F1059.
24 Xu N, Geng D, Tong X, et al. Solid State Ionics, 2020, 358, 115482.
25 Gao J T, Li J H, Wang Y P, et al. Journal of Thermal Spray Technology, 2020, 29(8), 2001.
26 Wang Y P, Gao J T, Chen W, et al. Journal of Thermal Spray Technology, 2020, 29(1-2), 223.
[1] 董天顺, 郑晓东, 李国禄, 王海斗, 周秀锴, 李亚龙. 大气等离子喷涂Fe基涂层及其氩弧重熔层的组织与力学性能[J]. 材料导报, 2019, 33(4): 678-683.
[2] 汪倡, 庞学佳, 高宗鸿, 刘金娜, 房永超, 崔秀芳, 刘二宝, 金国. YSZ纤维增强等离子喷涂Al2O3/8YSZ涂层耐磨性能研究[J]. 《材料导报》期刊社, 2018, 32(4): 563-568.
[3] 高硕洪, 刘敏, 张小锋, 邓春明. 新型陶瓷基复合超疏水涂层的制备及其性能[J]. 材料导报, 2018, 32(20): 3510-3516.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed