Please wait a minute...
材料导报  2022, Vol. 36 Issue (Z1): 22010030-5    
  金属与金属基复合材料 |
有机酸对新型铝锂合金阳极氧化膜结构及耐蚀性的影响
陈小丽
重庆航天职业技术学院航空机电工程学院, 重庆 400021
Effect of Organic Acid on Anodizing Film Structures and Corrosion Resistance of Novel Aluminum-Lithium Alloy
CHEN Xiaoli
College of Aeronautical Mechanical and Electrical Engineering, Chongqing Aerospace Polytechnic, Chongqing 400021, China
下载:  全 文 ( PDF ) ( 9883KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 新型铝锂合金较传统铝合金密度低、比强度高、比刚度高,广泛用作航空器结构件,以减轻飞机自重并提高有效载荷和燃油效率。但铝锂合金易发生局部腐蚀,工业上常通过阳极氧化来提高其耐蚀性能。本工作研究了硫酸电解液中的酒石酸添加量对阳极氧化膜结构及耐蚀性能的影响,分别添加0 mol/L、0.1 mol/L、0.3 mol/L、0.53 mol/L、0.7 mol/L、0.9 mol/L的酒石酸,以获得阳极氧化膜。采用场发射扫描电镜观察阳极氧化膜的微观表面形貌,通过电化学阻抗谱、中性盐雾实验研究该膜层的耐蚀性能。结果表明:酒石酸并未改变阳极阳极氧化膜的成膜机理,但降低了氧化膜的溶解速率,阳极氧化膜的生长速率、厚度随酒石酸浓度的增大呈先增加后降低的趋势,其厚度在0.3 mol/L时达到最大值。酒石酸能降低氧化膜阻挡层电容,增加阻挡层电阻,使侵蚀性离子很难穿过氧化膜层,但尚未发现酒石酸-硫酸阳极氧化(TSA)膜耐蚀性能与酒石酸添加量的明显关联性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈小丽
关键词:  铝锂合金  酒石酸  阳极氧化  耐蚀性    
Abstract: Compared with traditional aluminum alloys, the novel aluminum-lithium (Al-Li) alloys are widely used in the aerospace industry, to improve the payload and fuel efficiency of the aircraft, due to their low density, high specific strength and specific stiffness. However, the Al-Li alloys are prone to corrosion in humid environments. In industry, the corrosion resistance of aluminum alloys is usually improved through anodizing treatments. This work studied the effect of tartaric acid content on the structure and corrosion resistance of the anodic oxidation film, by adding 0 mol/L, 0.1 mol/L, 0.3 mol/L, 0.53 mol/L, 0.7 mol/L, and 0.9 mol/L tartaric acid into sulfuric acid solution. The corrosion resistance of the anodic films was investigated through electrochemical impedance spectroscopy (EIS) and neural salt spray test (NSST). The results show that tartaric acid did not change the formation mechanism of anodic oxide film, but reduced the dissolution rate of the film. The growth rate and thickness of anodic oxide film increased firstly and then decreased with the increase of tartaric acid concentration, and reached the maximum value when the amount of tartaric acid was 0.3 mol/L. Tartaric acid can reduce the capacitance of the oxide film barrier layer, increase the resistance of the barrier layer, and make it difficult for the aggressive ions to pass through the oxide film. However, no obvious correlation between the corrosion resistance of TSA film and the amount of tartaric acid has been found.
Key words:  aluminum-lithium alloy    tartaric acid    anodizing    corrosion resistance
出版日期:  2022-06-05      发布日期:  2022-06-08
ZTFLH:  TG178  
基金资助: 重庆市教育委员会高校科学技术研究项目(KJQN201903004)
通讯作者:  592829123@qq.com   
作者简介:  陈小丽,2016年6月毕业于重庆理工大学,获得硕士学位。现就职于重庆航天职业技术学院,从事航空材料表面处理、加工研究。
引用本文:    
陈小丽. 有机酸对新型铝锂合金阳极氧化膜结构及耐蚀性的影响[J]. 材料导报, 2022, 36(Z1): 22010030-5.
CHEN Xiaoli. Effect of Organic Acid on Anodizing Film Structures and Corrosion Resistance of Novel Aluminum-Lithium Alloy. Materials Reports, 2022, 36(Z1): 22010030-5.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2022/V36/IZ1/22010030
1 陈小丽, 麻彦龙, 黄伟九, 等. 材料导报:综述篇, 2015, 29(4), 107.
2 麻彦龙, 孟晓敏, 黄伟九, 等. 中国有色金属学报, 2015, 25(3),7.
3 孙洁琼, 张宝柱.航空工程进展, 2013, 4(2), 158.
4 麻彦龙,陈小丽,易雅楠,等. 中国有色金属学报, 2016,26(10),2056.
5 Arenas M A, de Damborenea J J. Surface and Coatings Technology, 2004, 187(2), 320.
6 梁钊源, 麻彦龙, 朱彭舟, 等.重庆理工大学学报 (自然科学), 2020, 34(2), 100.
7 陈小丽. 铝锂合金酒石酸—硫酸阳极氧化膜的腐蚀行为及机理研究.硕士学位论文, 重庆理工大学,2016.
8 Ortiz J L, Carpio J J, Amigo V, et al.Journal of Materials Science Letters, 2001, 20(3), 197.
9 麻彦龙, 孟晓敏, 黄伟九, 等.中国有色金属学报, 2015, 25(3), 611.
10 Arenas M A, de Damborenea J J.Surface and Coatings Technology, 2004, 187(2), 320.
11 刘建华, 李永星, 于美, 等.中国有色金属学报, 2012(1), 324.
12 Deng S, Xu L, Li Q Z,et al. Advanced Materials Research, 2012, 399, 95.
13 Hakimizad A, Raeisii K, Ashrafizadeh F. Surface and Coatings Technology, 2012, 206(8), 2438.
14 Du N, Wang S X , Zhao Q, et al. Transactions of Nonferrous Metals Society of China, 2012, 22(7), 1655.
15 Kock E, Beneke M, Gerlach C. U S patent application, 2004.
16 Curioni M, Skeldon P, Thompson G E, et al.Advanced MAterials Research, 2008, 38, 48.
17 Curioni M, Skeldon P, Thompson G E, et al.Journal of the Electrochemical Society, 2009, 156(4), C147.
18 王正曦. 5182铝合金防腐表面处理研究.硕士学位论文, 重庆理工大学, 2018.
[1] 简燕, 杨文静, 杨磊, 宋绍意, 倪婕, 何银芳. 纳米多孔硅的多片制备及其性能表征[J]. 材料导报, 2022, 36(Z1): 22010200-6.
[2] 陈小丽, 谭敏, 罗文东. 温度对铝锂合金阳极氧化膜结构及耐蚀性的影响[J]. 材料导报, 2022, 36(Z1): 21120067-5.
[3] 李朝阳, 黄光杰, 曹玲飞, 曹宇, 林林. 升温速率对AA2060铝锂合金中间形变热处理微观组织的影响[J]. 材料导报, 2022, 36(7): 21020008-7.
[4] 黄珂, 易幼平, 黄始全, 董非, 王晨光. 2195铝锂合金超低温流变行为及成形特性研究[J]. 材料导报, 2022, 36(3): 20090263-6.
[5] 仇伟夷, 祝祥辉, 黄伟九, 杨绪盛, 汪鑫. 晶界特征对AA2099铝锂合金疲劳加载分层断裂影响探究[J]. 材料导报, 2022, 36(10): 21030256-5.
[6] 杨帅, 刘施峰, 张静, 柳亚辉, 邓超, 祝佳林. 电解液的循环使用对阳极氧化Ta2O5纳米管形貌的影响[J]. 材料导报, 2021, 35(Z1): 112-115.
[7] 杜宇航, 丁德渝, 郭宁, 郭胜锋. 高熵合金功能特性研究进展[J]. 材料导报, 2021, 35(17): 17051-17063.
[8] 曹苗, 谢发勤, 吴向清, 王少青, 鲁闯, 姚小飞. 无铬锌铝涂层的研究进展[J]. 材料导报, 2021, 35(13): 13128-13138.
[9] 张鹏斐, 乔志军, 张志佳, 于镇洋, 赵潭, 苟金龙. 加入增韧材料提高TiO2复合纳米电极的力学和电化学性能[J]. 材料导报, 2020, 34(Z2): 24-29.
[10] 曾尚武, 郭夏溦, 张磊, 屈帅, 常建伟, 王舒然, 徐德录, 李雅泊. 铁塔用VCI双金属涂层的制备及性能研究[J]. 材料导报, 2020, 34(Z2): 423-428.
[11] 栾吉瑜, 王保杰, 许道奎, 孙杰. 镁锂合金表面腐蚀防护研究进展[J]. 材料导报, 2020, 34(Z2): 441-446.
[12] 赵秋萍, 钱庆一, 张斌, 牟志星, 张兴凯. 质子交换膜燃料电池金属双极板表面碳基防护镀层研究进展[J]. 材料导报, 2020, 34(Z1): 395-399.
[13] 张玉, 刘施峰, 李利娟, 祝佳林, 邓超. 晶粒取向及氧化电压对阳极氧化Ta2O5纳米管形貌的影响[J]. 材料导报, 2020, 34(8): 8010-8013.
[14] 赵静, 王天鹏, 张淮浩. 磁场作用下十二烷基苯磺酸钠对阳极铝箔的缓蚀性能及比电容的影响[J]. 材料导报, 2020, 34(6): 6156-6160.
[15] 余登德, 张仁耀, 沈月, 闻明, 刘洪喜1,. 混合表面纳米化制备钛表面Ru/Ti薄膜的结构及耐蚀性能[J]. 材料导报, 2020, 34(24): 24086-24091.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed