Please wait a minute...
材料导报  2022, Vol. 36 Issue (Z1): 21120243-8    
  无机非金属及其复合材料 |
硅酸锂混合溶液浸泡对石灰岩集料耐磨性能的影响
吕建伟1, 张洪亮2, 张戈3, 李纪岩2
1 杭州市交通运输发展保障中心,杭州 310030
2 长安大学公路学院,西安 710054
3 山东省交通规划设计院集团有限公司,济南 250101
Influence of Lithium Silicate Mixed Solution on the Wear Resistance of Aggregate Made from Limestone
LYU Jianwei1, ZHANG Hongliang2, ZHANG Ge3, LI Jiyan2
1 Hangzhou Transportation Development Guarantee Center, Hangzhou 310030, China
2 School of Highway,Chang'an University, Xi'an 710054, China
3 Shandong Provincial Communications Planning and Design Institute Co., Ltd, Jinan 250101, China
下载:  全 文 ( PDF ) ( 11243KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为提高沥青路面的抗滑耐久性能,本工作采用硅酸锂混合溶液浸泡集料的方法来改善石灰岩集料的耐磨性能。本工作先将经五组质量比的四种硅酸锂混合液浸泡的集料通过水浸法试验和光电比色法试验进行初选,再通过洛杉矶磨耗试验和磨光值试验进行复选。对优选出的集料通过压碎值试验和密度与吸水率试验测试集料性能,并通过红外光谱试验、扫描电镜、AIMS集料图像测量系统探究硅酸锂混合溶液浸泡提高集料耐磨性能的机理。结果表明:质量比为6∶4的硅酸锂与硅丙乳液混合液浸泡的集料的黏附性和耐磨性均较好,其黏附性达到了五级,磨耗损失减少了大约25%。该混合溶液的浸泡对集料表观相对密度影响小,但却明显降低了集料的吸水率,提高了集料的抗压碎能力。硅酸锂硅丙混合液与石灰岩发生了化学键的结合,使混合溶液更好地黏附在集料表面;硅酸锂又具有良好的耐磨性能,硅酸锂混合溶液在集料周围形成了保护层,延缓了集料棱角性和表面纹理的衰减,提高了集料保持棱角和表面粗糙的能力,从而提高了集料的耐磨性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吕建伟
张洪亮
张戈
李纪岩
关键词:  硅酸锂  混合溶液  石灰岩  硅丙乳液    
Abstract: In order to improve the anti-skid performance of asphalt pavement,the aggregates were soaked in lithium silicate mixed solutions to improve the wear resistance in this work. The aggregates immersed in four kinds of lithium silicate mixed solutions with five different mass ratios were prepared and then initially selected by water immersion test and photoelectric colorimetric test, and then re-selected by Los Angeles abrasion test and polishing value test. The properties of selected aggregates was evaluated by crushing value test and density and water absorption test, and improvement mechanism of the wear resistance of soaked aggregates was explored through infrared spectroscopy test, scanning electron microscope, and AIMS aggregates image measurement system. The results showed that the adhesion and abrasion resistance of the aggregates soaked in the mixed solution of lithium silicate and silicone-acrylic emulsion with a mass ratio of 6∶4 were good, and its adhesion had reached the fifth level, and the abrasion loss had been reduced by about 25%. Solution immersion had little effect on the apparent relative density of the aggregates, but it obviously reduced the water absorption of the aggregates, and improved the crush resistance of the aggregates. The mixed solution of lithium silicate and silicone acrylic emulsion had chemical bond with limestone, which made the mixed solution better adhered to the aggregate surface. Because lithium silicate also had good wear resistance,so the protective layer formed by the mixed solution of lithium silicate and silico-nacrylic emulsion around the aggregate delayed the attenuation of aggregate angularity and surface texture, and improved the ability of aggregate to maintain angularity and surface roughness, so as to improve the wear resistance of aggregate.
Key words:  lithium silicate    mixed solution    limestone    silicone acrylic emulsion
出版日期:  2022-06-05      发布日期:  2022-06-08
ZTFLH:  U414  
基金资助: 浙江省交通科技项目(2019H11)
通讯作者:  zhliang0105@163.com   
作者简介:  吕建伟,现工作于杭州市交通运输发展保障中心,正高级工程师。2001年6月本科毕业于浙江工业大学交通土建工程专业。主要研究方向为公路工程建设及管理。已公开发表论文20余篇,授权专利6项左右。
张洪亮,长安大学公路学院三级教授、博士生导师。1997年西安公路交通大学本科毕业;2000年获得长安大学工学硕士学位;2003年获得长安大学工学博士学位。2000年起在长安大学任教至今。研究领域为路基路面工程,目前主要的研究方向包括生态与环保沥青路面、智能路面、路面新材料的研发等等。已公开发表论文近100篇,其中第一作者/通讯作者SCI收录20余篇,授权专利35项,其中以第一发明人授权国家发明专利14项,编著《连续配筋混凝土路面》。获得国家级教学成果二等奖一项。
引用本文:    
吕建伟, 张洪亮, 张戈, 李纪岩. 硅酸锂混合溶液浸泡对石灰岩集料耐磨性能的影响[J]. 材料导报, 2022, 36(Z1): 21120243-8.
LYU Jianwei, ZHANG Hongliang, ZHANG Ge, LI Jiyan. Influence of Lithium Silicate Mixed Solution on the Wear Resistance of Aggregate Made from Limestone. Materials Reports, 2022, 36(Z1): 21120243-8.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2022/V36/IZ1/21120243
1 徐金枝, 郝培文, 郭晓刚, 等. 中国公路学报, 2021, 34(10), 72.
2 王端宜, 王刚, 李智, 等. 中国公路学报, 2017, 30(9), 1.
3 Xiong J P, Gong W J, Huang Y T. Advanced Materials Research, 2014, 3470(1030-1032), 1123.
4 耿九光, 兰倩, 刘光军, 等. 应用化工, 2020, 49(4), 1025.
5 董祥, 张士萍, 丁小晴, 等. 公路, 2011, 56(11), 14.
6 黄远殷. 加速磨耗试验与沥青路面表层抗滑研究. 硕士学位论文, 广州大学, 2017.
7 郑典模, 陈创, 陈骏驰, 等. 无机盐工业, 2015, 47(7), 32.
8 陈潇湘, 熊卓, 余学海, 等. 燃烧科学与技术, 2018, 24(3), 257.
9 Charles R J. Journal of the American Ceramic Society, 2006, 46(5), 235.
10 Gransberg D D. In:Development and Practice in Structural Engineering and Construction. Singapore, 2012, pp.383.
11 Riemer C J, Pittenger D, Gransberg D D. In: Transportation Research Board 91st Annual Meeting. Washington, 2012,pp.8.
12 代玉兰, 谢晓丽, 胡志华.西南科技大学学报, 2021, 36(1), 35.
13 蒋乐. 硅酸锂基有机无机复合涂层的制备与性能研究.硕士学位论文, 浙江大学, 2015.
14 吴波, 杜爱琴. 山东大学学报(工学版), 2004, 34(2), 96.
15 Song Z J, Lu Z Y, Lai Z Y,et al. Materials (Basel, Switzerland), 2020, 13(22), 1.
16 韩超, 安丰伟, 韦武举. 公路, 2015, 60(12), 210.
17 郝雪丽, 孙朝云, 耿方圆, 等.华南理工大学学报(自然科学版), 2021, 49(1), 142.
18 李智, 靖红晨, 王子硕. 广西大学学报(自然科学版), 2020, 45(6), 1301.
19 徐冬青, 张东, 庄心怡, 等. 公路交通科技, 2019, 36(6), 1.
20 王旭东. 集料岩性及微观特征对沥青混合料路用性能的影响研究. 硕士学位论文, 吉林大学, 2014.
21 耿超, 包静, 邹鹏, 等. 中国公路学报, 2018, 31(11), 58.
22 杨胜强, 李文辉, 李秀红, 等.表面技术, 2019, 48(10), 13.
23 曹义亲, 曹婷, 黄晓生. 计算机科学, 2019, 46(6), 271.
24 黄果, 蒲亦非,陈庆利, 等. 四川大学学报(工程科学版), 2011, 43(1), 129.
25 张洁玉, 赵鸿萍, 陈曙. 电子与信息学报, 2014, 36(6), 1327.
26 赵小彦. 公路, 2019, 64(2), 220.
27 甘新立. 集料与沥青的表面特性分析及黏附性评价. 硕士学位论文, 长安大学, 2017.
28 任鑫, 胡文全. 高分子材料分析技术, 北京大学出版社, 2012,pp. 72.
[1] 马丽, 黄建建, 何慧, 杨波, 贾德民, 郭东杰, 陈宝元. 微波辐照辅助核/壳型聚硅氧烷/聚丙烯酸酯复合乳液的制备与表征[J]. 材料导报, 2021, 35(22): 22166-22171.
[2] 范文琦, 潘登, 黄亮, 王强. 工业固废和廉价矿石制备高循环稳定性高温CO2捕集材料的研究进展[J]. 材料导报, 2021, 35(17): 17090-17102.
[3] 潘福森, 沈龙, 童磊, 聂顺军, 李虹. 喷雾造粒制备纳米硅-硬碳复合材料及其性能[J]. 材料导报, 2020, 34(Z1): 132-136.
[4] 肖俊华, 左迎峰, 吴义强, 刘文杰, 吴志平, 孟陶陶. 硅丙乳液对镁系无机胶黏剂性能和微结构的影响*[J]. 《材料导报》期刊社, 2017, 31(18): 49-54.
[5] 李延安, 董海泉, 徐丽娜, 李蛟. 硅丙乳液包覆Mg(OH)2核壳结构纳米粒子的制备与表征*[J]. 《材料导报》期刊社, 2017, 31(18): 97-101.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed