Please wait a minute...
材料导报  2022, Vol. 36 Issue (Z1): 21120009-5    
  无机非金属及其复合材料 |
冻融循环与预应力共同作用下混凝土抗压强度试验研究
陈瑞明1, 向阳开2, 梁路3, 赵毅2
1 贵阳职业技术学院城乡规划建设分院,贵阳 550081
2 重庆交通大学材料科学与工程学院,重庆 400074
3 石河子大学水利建筑工程学院,新疆 石河子 832000
Experimental Study on Compressive Strength of Concrete Under Combined Action of Freeze-Thaw Cycle and Prestress
CHEN Ruiming1, XIANG Yangkai2, LIANG Lu3, ZHAO Yi2
1 Urban and Rural Planning and Construction Branch of Guiyang Vocational and Technical College, Guiyang 550081, China
2 School of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China
3 School of Water Conservancy and Construction Engineering, Shihezi University, Shihezi 832000, Xinjiang, China
下载:  全 文 ( PDF ) ( 3414KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为研究冻融循环与预应力共同作用下混凝土的强度损失规律,对σcon/fptk=0.4、0.6、0.8三种预应力条件下的无粘结预应力梁开展25次、50次、75次快速冻融循环试验,研究了冻融循环、预应力作用以及二者共同作用对混凝土抗压强度的影响。研究结果表明,当预应力达到σcon/fptk=0.8时,各冻融循环次数下的混凝土抗压强度较为接近,此时冻融循环对混凝土抗压强度的影响最小;随着冻融循环次数的增加,无预应力混凝土的抗压强度损失远大于预应力混凝土抗压强度的损失,且预应力越大的混凝土抗压强度降低越缓慢;预应力对冻融循环条件下混凝土抗压强度的衰减有抑制作用,随着预应力的增加,这种抑制作用越明显。最后,根据试验结果建立考虑冻融循环和预应力作用条件下混凝土的抗压强度损失计算模型。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈瑞明
向阳开
梁路
赵毅
关键词:  冻融循环  预应力混凝土  抗压强度  损失规律  计算模型    
Abstract: In order to study the strength loss law of concrete under the combined action of freeze-thaw cycle and prestress. 25 cycles, 50 cycles and 75 cycles of rapid freeze-thaw cycles were carried out on unbonded prestressed beams under σcon/fptk= 0.4, 0.6 and 0.8 prestressing conditions. The law of concrete strength loss under the combined action of freeze-thaw cycle and prestress is studied. The test results show that when the prestress reaches σcon/fptk= 0.8, the compressive strength of concrete under each freeze-thaw cycle is relatively close, and the freeze-thaw cycle has the least impact on the compressive strength of concrete. With the increase of freeze-thaw cycles, the loss of compressive strength of non prestressed concrete is much greater than that of prestressed concrete, and the greater the prestress, the slower the reduction of compressive strength.Prestress can inhibit the attenuation of concrete compressive strength under freeze-thaw cycle. With the increase of prestress, this inhibition is more obvious.Finally, according to the test results, the calculation model of compressive strength loss of concrete considering freeze-thaw cycle and prestress is established.
Key words:  freeze-thaw cycle    prestressed concrete    compressive strength    law of loss    computational model
出版日期:  2022-06-05      发布日期:  2022-06-08
ZTFLH:  TU378.2  
基金资助: 山区桥梁及隧道工程国家重点实验室开放基金(CQSLBF-Y14-13)
通讯作者:  xiangyangkai@163.com   
作者简介:  陈瑞明,2013年6月、2016年6月分别于呼伦贝尔学院和重庆交通大学获得工学学士学位和硕士学位。2016年到贵阳职业技术学院工作至今,主要从事结构工程以及混凝土结构耐久性方面的研究。发表论文7篇,授权实用新型专利2项,参编专著1部。
向阳开,1986年于长沙铁道学院取得学士学位,1989年于重庆建筑工程学院取得硕士学位,2000年于西南交通大学取得博士学位。重庆交通大学材料科学与工程学院党委书记、教授、博士,先后负责了国家级、省部级和其他各类科研项目10多项,公开发表学术论文近30篇,EI检索及中文核心期刊近20篇。参编出版了研究生教材《高等钢筋混凝土结构》(人民交通出版社)及本科生教材《钢结构》(重庆大学出版社)等。主要从事土木桥梁结构工程、预应力混凝土和钢筋混凝土结构及材料的力学行为分析方面的研究。
引用本文:    
陈瑞明, 向阳开, 梁路, 赵毅. 冻融循环与预应力共同作用下混凝土抗压强度试验研究[J]. 材料导报, 2022, 36(Z1): 21120009-5.
CHEN Ruiming, XIANG Yangkai, LIANG Lu, ZHAO Yi. Experimental Study on Compressive Strength of Concrete Under Combined Action of Freeze-Thaw Cycle and Prestress. Materials Reports, 2022, 36(Z1): 21120009-5.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2022/V36/IZ1/21120009
1 孙科科,彭小芹,冉鹏,等.材料导报,2021,35(24),24106.
2 徐存东,高懿伟,程昱,等.混凝土,2019(11),29.
3 肖前慧,牛荻涛,朱文凭.武汉理工大学学报,2010,32(7),35.
4 Tian W, Gao F. Advances in Materials Science & Engineering, DOI:10.1155/2020/8032849.
5 Zhu X, Chen X, Zhang N, et al. Construction and Building Materials, 2021, 288, 123110.
6 Xu F,Wang S L,Li T,et al. Construction and Building Materials,2021,269, 121273.
7 王晓伟,王晓婷,刘品旭,等.土木工程与管理学报, 2017, 34(2),68.
8 赵燕茹,刘芳芳, 王磊,等. 建筑材料学报,2020, 23(6),1328.
9 薛翠真,申爱琴,乔宏霞.华南理工大学学报(自然科学版),2020,48(3),136.
10 魏毅萌,柴军瑞,覃源,等.硅酸盐通报,2018,37(3) ,825.
11 何晓雁,周曜,刘平源,等.建筑科学与工程学报,http://kns.cnki.net/kcms/detail/61.1442.TU.20211230.1013.004.html.
12 赵小明,王新科,乔宏霞,等.混凝土与水泥制品,2022(1),53.
13 吴小勇,周 凯,朱永帅,等.建筑结构学报,2021,42(s1),442.
14 黄奕霖,严武建,牛富俊.混凝土与水泥制品,2021(5),21.
15 冯忠居,郭穗柱,孟莹莹,等.哈尔滨工业大学学报,2021,53(9),69.
16 陈瑞明,向阳开,等.山东交通学院学报,2016,24(2),49.
17 中华人民共和国国家标准.GB/T20082—2009混凝土长期性能和耐久性性能试验方法标准, 中国建筑工业出版社,2009, pp.10.
18 周志祥,徐岳.高等钢筋混凝土结构, 人民交通出版社,2002, pp.22.
19 肖前慧,牛荻涛,等.建筑结构,2011,41(s2),203.
[1] 郑超, 朱本谦, 陈清蓉, 杨泽波, 刘勇. 基于水泥熟料与矿物掺合料制备新胶凝材料体系[J]. 材料导报, 2022, 36(Z1): 21100177-3.
[2] 王晓娇, 戚承志, 周理安, 李太行, 陈昊祥, 王泽帆, 马啸宇, 封焱杰, 罗伊. 掺再生微粉的城墙内芯土渗透性和强度研究[J]. 材料导报, 2022, 36(Z1): 21100220-6.
[3] 王俊辉, 黄悦, 杨国涛, 魏琦安, 刘文卓. 再生混凝土抗压性能研究进展[J]. 材料导报, 2022, 36(Z1): 21100033-9.
[4] 龙朝飞, 张戎令, 段运, 郭海贞, 肖鹏震, 段亚伟. 基于成熟度理论持续负温下不同入模温度工况的混凝土强度预测模型[J]. 材料导报, 2022, 36(6): 20100044-8.
[5] 刘鑫, 田轶轩, 黄金凤, 万城铭, 杨宏宇, 万朝均. 用于地聚合物的粉煤灰活性评价研究[J]. 材料导报, 2022, 36(2): 21010007-7.
[6] 王英, 杨熙, 姜继斌, 李萍, 念腾飞. 动水冲刷作用下季冻区沥青混合料水损害发展的细观过程[J]. 材料导报, 2022, 36(10): 21040158-7.
[7] 杨玉柱, 黄维蓉, 耿嘉庆, 崔通, 晏茂豪. 基于半经验的UHPC配合比设计方法[J]. 材料导报, 2021, 35(z2): 188-193.
[8] 梁晓前, 黄榜彪, 黄秉章, 杨雷铭, 孙文贤, 林通敏, 任志强, 李有的, 刘灏. 基于孔结构的蒸压加气混凝土的冻融循环耐久性试验研究[J]. 材料导报, 2021, 35(z2): 200-204.
[9] 葛洁雅, 朱红光, 李宗徽, 李为健, 沈正艳, 侯金良, 杨森. 煤矸石粗骨料-地聚物混凝土的力学与耐久性能研究[J]. 材料导报, 2021, 35(z2): 218-223.
[10] 席雅允, 沈玉, 刘娟红, 吴瑞东, 许鹏玉. 化学激发对煤气化渣-水泥体系抗压强度影响机理研究[J]. 材料导报, 2021, 35(z2): 262-267.
[11] 戴文亭, 刘丹丹, 郭威, 李颖松, 安胤. 冻融循环条件下硅烷偶联剂改性泡沫沥青混合料的损伤特性[J]. 材料导报, 2021, 35(Z1): 264-268.
[12] 代金芯, 石宵爽, 王清远, 张红恩, 栾晨晨, 张宽裕, 杨富花. 多因素对再生复合掺料基地聚物混凝土抗压强度的影响[J]. 材料导报, 2021, 35(9): 9077-9082.
[13] 龚建清, 罗鸿魁, 张阳, 龚啸, 谢泽酃, 吴五星, 戴远帆. 减缩剂和HCSA膨胀剂对UHPC力学性能和收缩性能的影响[J]. 材料导报, 2021, 35(8): 8042-8048.
[14] 卢喆, 王社良, 王善伟, 姚文娟, 刘博, 闫强强. 氯盐侵蚀-冻融循环耦合作用下改性糯米灰浆耐久性能增强方法[J]. 材料导报, 2021, 35(3): 3033-3040.
[15] 史金华, 史才军, 欧阳雪, 刘剑辉, 黄勇, 吴泽媚. 超高性能混凝土受压弹性模量研究进展[J]. 材料导报, 2021, 35(3): 3067-3075.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed