Please wait a minute...
材料导报  2022, Vol. 36 Issue (Z1): 21100177-3    
  无机非金属及其复合材料 |
基于水泥熟料与矿物掺合料制备新胶凝材料体系
郑超, 朱本谦, 陈清蓉, 杨泽波, 刘勇
武汉三源特种建材科技有限公司,武汉 430083
Preparation of New Cementitious Material System Based on Cement Clinker and Mineral Admixture
ZHENG Chao, ZHU Benqian, CHEN Qingrong, YANG Zebo, LIU Yong
Wuhan Sanyuan Special Building Materials Co., Ltd., Wuhan 430083, China
下载:  全 文 ( PDF ) ( 6285KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 水泥行业作为传统产业,是资源、能源消耗大户和碳排放大户,这与我国提倡的“建设资源节约型、环境友好型社会”相矛盾。近几年,人们逐渐关注使用水泥熟料与其他辅助矿物掺合料取代水泥用于混凝土中。本工作通过大量试验,探明了水泥熟料和超细复合掺合料的最佳比表面积分别为370 m2/kg、650 m2/kg。在此基础上,研究了不同质量比的水泥熟料、矿粉、超细复合掺合料、粉煤灰复掺取代水泥对其胶砂性能的影响,以及对C30混凝土性能的影响;并利用化学分析、XRD和SEM等方法对熟料和混凝土进行检测分析。结果表明,C30混凝土的最适宜配比为水175 kg/m3、海螺水泥熟料130 kg/m3、石子1 050 kg/m3、砂子810 kg/m3、超细复合掺合料110 kg/m3、粉煤灰80 kg/m3、矿粉40 kg/m3、减水剂8.9 kg/m3,且所制备的C30混凝土各项性能表现良好,抗压强度满足要求。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑超
朱本谦
陈清蓉
杨泽波
刘勇
关键词:  水泥熟料  超细复合掺合料  粉煤灰  抗压强度    
Abstract: As a traditional industry, the cement industry is a large resource and energy consumer and a large carbon emitter. This is inconsistent with the “construction of a resource-saving and environment-friendly society” advocated by China. In recent years, people have gradually paid attention to the use of cement clinker and other auxiliary mineral admixtures are used in concrete instead of cement. Through a large number of experiments, this work has proved that the best specific surface areas of cement clinker and superfine composite admixture are 370 m2/kg and 650 m2/kg, respectively; on this basis, the research the effect of different proportions of cement clinker, superfine composite admixture, fly ash, on the performance of cement mortar and the effect on the performance of C30 concrete. The clinker and concrete are tested and analyzed by chemical analysis, XRD and SEM, etc. The result shows that the most suitable ratio of C30 concrete is water 175 kg/m3, conch cement clinker 130 kg/m3, stone 1 050 kg/m3, sand 810 kg/m3, superfine composite admixture 110 kg/m3, fly ash 80 kg/m3, ore the powder is 40 kg/m3, the water reducing agent is 8.9 kg/m3, and the performance of the prepared C30 concrete is good, and the compressive strength meets the requirements.
Key words:  cement clinker    superfine composite admixture    fly ash    compressive strength
出版日期:  2022-06-05      发布日期:  2022-06-08
ZTFLH:  TU528  
通讯作者:  1526418268@qq.com   
作者简介:  郑超,2020年6月毕业于重庆大学,获得工学硕士学位。同年至今在武汉三源特种建材科技有限公司担任研发工程师,主要从事矿物掺合料性能开发与应用。
引用本文:    
郑超, 朱本谦, 陈清蓉, 杨泽波, 刘勇. 基于水泥熟料与矿物掺合料制备新胶凝材料体系[J]. 材料导报, 2022, 36(Z1): 21100177-3.
ZHENG Chao, ZHU Benqian, CHEN Qingrong, YANG Zebo, LIU Yong. Preparation of New Cementitious Material System Based on Cement Clinker and Mineral Admixture. Materials Reports, 2022, 36(Z1): 21100177-3.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2022/V36/IZ1/21100177
1 崔红军. 水泥生产,2017(7),02.
2 杨云霞. 低熟料矿渣水泥的制备及其水化机理探讨.硕士学位论文, 广西大学,2007.
3 李鑫,王志刚,刘数华. 硅酸盐通报,2014, 33(8),2114.
4 胡益彰, 葛智. 硅酸盐通报,2015, 34(10), 2737.
5 张同生. 水泥熟料与辅助性胶凝材料的优化匹配.博士学位论文, 华南理工大学,2012.
6 蒋永惠,阎春霞. 硅酸盐学报, 1998, 26(4), 424.
7 Ji Y J, Jong H C. Cement and Concrete Research, 2003, 33(10), 1543.
8 Guo Y, Huang X, Zhu B L, et al. Powder Technology, 2008, 187(1), 88.
[1] 王晓娇, 戚承志, 周理安, 李太行, 陈昊祥, 王泽帆, 马啸宇, 封焱杰, 罗伊. 掺再生微粉的城墙内芯土渗透性和强度研究[J]. 材料导报, 2022, 36(Z1): 21100220-6.
[2] 王俊辉, 黄悦, 杨国涛, 魏琦安, 刘文卓. 再生混凝土抗压性能研究进展[J]. 材料导报, 2022, 36(Z1): 21100033-9.
[3] 陈瑞明, 向阳开, 梁路, 赵毅. 冻融循环与预应力共同作用下混凝土抗压强度试验研究[J]. 材料导报, 2022, 36(Z1): 21120009-5.
[4] 龙朝飞, 张戎令, 段运, 郭海贞, 肖鹏震, 段亚伟. 基于成熟度理论持续负温下不同入模温度工况的混凝土强度预测模型[J]. 材料导报, 2022, 36(6): 20100044-8.
[5] 童国庆, 张吾渝, 高义婷, 唐雄宇. 碱激发粉煤灰地聚物的力学性能及微观机制研究[J]. 材料导报, 2022, 36(4): 20100278-6.
[6] 刘鑫, 田轶轩, 黄金凤, 万城铭, 杨宏宇, 万朝均. 用于地聚合物的粉煤灰活性评价研究[J]. 材料导报, 2022, 36(2): 21010007-7.
[7] 杨玉柱, 黄维蓉, 耿嘉庆, 崔通, 晏茂豪. 基于半经验的UHPC配合比设计方法[J]. 材料导报, 2021, 35(z2): 188-193.
[8] 葛洁雅, 朱红光, 李宗徽, 李为健, 沈正艳, 侯金良, 杨森. 煤矸石粗骨料-地聚物混凝土的力学与耐久性能研究[J]. 材料导报, 2021, 35(z2): 218-223.
[9] 席雅允, 沈玉, 刘娟红, 吴瑞东, 许鹏玉. 化学激发对煤气化渣-水泥体系抗压强度影响机理研究[J]. 材料导报, 2021, 35(z2): 262-267.
[10] 刘攀攀, 聂轶苗, 夏淼, 王玲, 刘淑贤, 王森, 王迎春, 刘朔宇, 翟培鑫. 三种粉煤灰的碱溶出特性及制备矿物聚合物的研究进展[J]. 材料导报, 2021, 35(Z1): 639-643.
[11] 代金芯, 石宵爽, 王清远, 张红恩, 栾晨晨, 张宽裕, 杨富花. 多因素对再生复合掺料基地聚物混凝土抗压强度的影响[J]. 材料导报, 2021, 35(9): 9077-9082.
[12] 龚建清, 罗鸿魁, 张阳, 龚啸, 谢泽酃, 吴五星, 戴远帆. 减缩剂和HCSA膨胀剂对UHPC力学性能和收缩性能的影响[J]. 材料导报, 2021, 35(8): 8042-8048.
[13] 时松, 刘长武, 吴海宽, 陈康亮. 粉煤灰-电石渣双掺改性高水充填材料物理力学性能研究[J]. 材料导报, 2021, 35(7): 7027-7032.
[14] 冯燕霞, 李北罡. 磁性Y/CTS/FA复合吸附剂的制备及对直接湖蓝5B的吸附[J]. 材料导报, 2021, 35(6): 6028-6034.
[15] 同帜, 黄开佩, 杨博文, 张健需. 低成本新型多孔陶瓷膜支撑体的制备及性能[J]. 材料导报, 2021, 35(6): 6054-6059.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed