Please wait a minute...
材料导报  2022, Vol. 36 Issue (16): 20070136-9    https://doi.org/10.11896/cldb.20070136
  金属与金属基复合材料 |
基于机器视觉和深度学习的材料缺陷检测应用综述
杨传礼1, 张修庆2,*
1 华东理工大学机械与动力工程学院,上海 200237
2 华东理工大学承压系统安全科学教育部重点实验室,上海 200237
Survey of Applications of Material Defect Detection Based on Machine Vision and Deep Learning
YANG Chuanli1, ZHANG Xiuqing2,*
1 School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
2 Key Laboratory of Pressure System Safety Science of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
下载:  全 文 ( PDF ) ( 14807KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 因材料缺陷而导致的安全问题一直是备受人们关注的热点问题,如何实现对材料缺陷的快速准确识别与定位是当今材料缺陷问题的研究重点。传统的无损检测方法主要通过超声波、X射线等实现对材料缺陷的识别与定位,这种方法虽然解决了人工检测效率低等问题,但是难以满足智能化、自动化与高精度的多重要求。
   计算机领域的进步刺激了机器视觉在材料缺陷检测方面的飞速发展,机器视觉检测技术的特点主要是将无损检测、自动化与智能化相结合,不仅安全性好、效率高,而且检测精度高。但是大多数机器视觉设备存在对不同缺陷识别任务需要不同图像处理算法的问题,意味着设备的通用性低,而且设备的生产与维护的成本也较高。
   近年来,深度学习的崛起推动人工智能领域迅猛发展,并且解决了传统的机器视觉对不同任务进行分类需要不同图像处理算法的问题,深度学习也成为材料缺陷检测方面的一个热门研究方向,已经有很多学者将深度学习技术应用到材料缺陷检测方向,而且无论是对材料的缺陷类别进行分类,还是对材料的缺陷进行定位与分割,相关研究都取得了不错的成果。
   本文首先对传统方法和机器视觉方法在材料缺陷方面的应用进行了概述与分析,叙述了深度学习在材料缺陷检测中的原理,然后分别系统地阐述了国内外深度学习在缺陷的分类、定位以及分割技术方面最新的应用,并对深度学习在材料缺陷检测领域应用的未来发展趋势进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨传礼
张修庆
关键词:  机器视觉  材料缺陷检测  深度学习  卷积神经网络    
Abstract: The safety problem caused by material defects has always been a hot issue, and how to realize the rapid accurate identification and location of material defects is the focus of current research on material defects. The traditional non-destructive testing method mainly uses ultrasonic, X-ray and other advanced technologies to realize the identification and positioning of material defects. Although this method solves the problem of low manual testing efficiency, it is still difficult to achieve the requirements of intelligentization, automation and high precision.
Advances in the computer technology has stimulated the rapid development of machine vision in the detection of material defects. The advantages of machine vision inspection technology are mainly the combination of non-destructive inspection, automation and intelligentization, which has not only good safety and high efficiency, but also high detection accuracy. However, an image processing algorithm usually can be effective to the recognition of only one specific kind of defect, which causes low versatility of the equipment and elevated cost of production and maintenance.
In recent years, the rise of deep learning has promoted the rapid development of the field of artificial intelligence, and solved the problem that traditional machine vision needs different image processing algorithms to classify different tasks. Deep learning has also become a popular research direction in material defect detection. Many scholars have applied deep learning technology to the field of material defect detection, and they have achieved good results whether they are related to the classification of material defects, or the location and the segmentation of material defects.
The article summarizes the application of traditional methods and machine vision methods in material defects, introduces the principles of deep learning in material defect detection, and systematically describes the application of deep learning in the classification, positioning and segmentation of material defects at home and abroad, and the future development trend of the application of deep learning in the field of material defect detection is prospected.
Key words:  machine vision    material defect detection    deep learning    convolutional neural network
出版日期:  2022-08-25      发布日期:  2022-08-29
ZTFLH:  TP391.4  
通讯作者:  *zhangxq@ecust.edu.cn   
作者简介:  杨传礼,2016年6月毕业于江苏师范学院,获得工学学士学位。现为华东理工大学机械与动力工程学院硕士研究生,在张修庆副教授的指导下进行研究。目前主要研究领域为基于深度学习的金属材料缺陷识别。张修庆,华东理工大学副教授、硕士研究生导师。2006 年博士毕业于上海交通大学材料加工工程专业,然后到华东理工大学工作至今。2014.7—2015.2 到美国伦斯勒理工学院进行访问、合作研究。在国内外学术期刊上发表论文60 余篇,申请国家发明专利11 项。其团队主要研究方向包括:表面工程技术,先进制造技术,材料的合成、结构与性能研究,新型合金材料、材料的腐蚀、磨损及防护,纳米材料制备、应用与工程,金属基复合材料的研制与开发等。
引用本文:    
杨传礼, 张修庆. 基于机器视觉和深度学习的材料缺陷检测应用综述[J]. 材料导报, 2022, 36(16): 20070136-9.
YANG Chuanli, ZHANG Xiuqing. Survey of Applications of Material Defect Detection Based on Machine Vision and Deep Learning. Materials Reports, 2022, 36(16): 20070136-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20070136  或          http://www.mater-rep.com/CN/Y2022/V36/I16/20070136
1 Eisenmann D J, Enyart D, Lo C, et al. AIP Conference Proceedings, 2014, 1581, 1505.
2 Chen Z, Wang J, Sun P. Internal Combustion Engine & Parts, 2020(4), 44(in Chinese).
陈朝, 王靖, 孙鹏. 内燃机与配件, 2020(4), 44.
3 Chiem T P, Wei Q Y. International Journal of Digital Crime and Forensics, 2014, 6(4), 50.
4 Chang W J, Pan J, Meng F H. Machine China, 2014(10), 108(in Chinese).
常文见, 潘杰, 孟凡辉. 中国机械, 2014(10), 108.
5 John H G. Quality, 2016, 55(11), 41.
6 Xie S J, Duan Z R, Li, J, et al. Sensors and Actuators A: Physical, 2020, 309, 112030.
7 Chesnokova A A, Kalayeva S Z, Ivanova V A. Journal of Physics: Conference Series, 2017, 881(1), 012022.
8 Cheng J, He C F, Zheng Y, et al. NDT&E International, 2020, 114, 102283.
9 Anton D P, Ina Y B, Igor Y B. Materials and Design, 2020, 187, 108385.
10 Du W Z, Shen H Y, Fu J Z, et al. Journal of Intelligent Manufacturing, 2021, 32, 141.
11 Tang B, Kong J Y, Wu S Q. Journal of Image and Graphics, 2017, 22(12), 1640(in Chinese).
汤勃, 孔建益, 伍世虔. 中国图象图形学报, 2017, 22(12), 1640.
12 Zhai D, Ding Y N, Li T. Electronic Science and Technology, 2014, 27(1), 160(in Chinese).
翟栋,丁亚男,李涛.电子科技, 2014,27(1), 160.
13 Wang H, Zhang Y, Shen H H, et al. Chinese Journal of Optics, 2017, 10(4), 438(in Chinese).
王浩, 张叶, 沈宏海, 等. 中国光学,2017,10(4), 438.
14 Chen Y H. Journal of Baoji University of Arts and Sciences(Natural Science Edition), 2013, 33(1), 16(in Chinese).
陈一虎. 宝鸡文理学院学报(自然科学版), 2013, 33(1), 16.
15 Herve A, Williams L J. Wiley Interdiplinary Reviews Computational Stats, 2010, 2(4), 433.
16 Chen Q L, Wang D X, Lin J G, et al. Forging & Stamping Technology, 2020(6), 168(in Chinese).
陈麒麟, 王东兴, 林建钢, 等. 锻压技术, 2020(6), 168.
17 Zhang Y Y, Li Y B, Wen Y T, et al. Acta Metrologica Sinica, 2020, 41(5), 544(in Chinese).
张玉燕, 李永保, 温银堂, 等. 计量学报, 2020, 41(5), 544.
18 Qi J Y, Li J Y. China Welding, 2019, 28(1), 56.
19 Yu H L, Hao L H, Liang H, et al. Journal of Forestry Research, 2019, 30(6), 2379.
20 Hu X Z, Sui Q M. Instrumentation Customer, 2017, 34(1), 21(in Chinese).
胡秀珍, 隋青美. 仪器仪表用户, 2017, 34(1), 21.
21 Ding W, Wang Q G, Zhu J F. IEEE Access, 2020, 8, 44661.
22 Chao C H, Eugene S, Po L, et al. Advances in Technology Innovation, 2020, 5(2), 76.
23 Zhou X, Wang Y N, Zhu Q, et al. Journal of Electronic Measurement and Instrument, 2016, 30(5), 702.
24 Wang Y, Wu Z H, Duan X Y, et al. IOP Conference Series-Earth and Environmental Science, 2018, 108, 022025.
25 Yang J, Yang G. Algorithms, 2018, 11(3), 28.
26 Jieun P, Dokkyun Y, Sangmin J. Symmetry, 2020,12(4),615.
27 Hinton G E, Osindero S, Teh Y W. Neural Computation, 2014, 18(7), 1527.
28 Hinton G, Salakhutdinov R. Science, 2006, 313(5786), 504.
29 Goodfellow I J, Pouget A J, Mirza M, et al. Advances in Neural Information Processing Systems, 2014, 3,2672.
30 Krizhevsky A, Sutskever I, Hinton G. In: Conference Record of 2012 Conference and Workshop on Neural Information Processing Systems. Lake Tahoe, 2012, pp. 1097.
31 Deng J, Dong W, Socher R, et al. In: Conference Record of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, Florida, USA,2009, pp. 248.
32 Simonyan K, Zisserman A. Computer Science, DOI: 10.48550/arXiv.1409.1556.
33 Szegedy C, Liu W, Jia Y, et al. In: Conference Record of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, 2015, pp.1.
34 Ioffe S, Szegedy C. In: Conference Record of the 32nd International Conference on Machine Learning. Lille, 2015, pp. 448.
35 Szegedy C, Vanhoucke V, Ioffe S, et al. In: Conference Record of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, 2016, pp. 2818.
36 He K, Zhang X, Ren S, et al. In: Conference Record of Computer Vision and Pattern Recognition (CVPR). Las Vegas, 2016, pp. 770.
37 He K, Zhang X, Ren S, et al. Computer Vision, 2016, 9908, 630.
38 Huang G, Liu Z, Van D M, et al. In: Conference Record of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Hawaii, 2017, pp. 2261.
39 Howard A G, Zhu M, Chen B, et al.In: Conference Record of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA, 2017.
40 Park J K, Kwon B K, Park J H, et al. International Journal of Precision Engineering and Manufacturing-Green Technology, 2016, 3(3), 303.
41 Kiryong K, Heeyoung K. IEEE Transactions on Semiconductor Manufacturing, 2018, 31(3), 395.
42 Yao M H, Chen Z H. Computer Measurement & Control, 2018, 26(9), 29(in Chinese).
姚明海, 陈志浩. 计算机测量与控制, 2018, 26(9), 29.
43 Szegedy C, Ioffe S, Vanhoucke V. In: Conference Record of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-2017). San Francisco,2017.
44 Deitsch S, Christlein V, Berger S, et al. Solar Energy, 2019, 185, 455.
45 Yang Y X, Zhao M. Heavy Machinery, 2019(2), 25(in Chinese).
杨延西, 赵梦. 重型机械, 2019(2), 25.
46 Zhang Z, Wen G, Chen S. Journal of Manufacturing Processes, 2019, 45, 208.
47 Guan L L. Research on crystal defect classification and detection techno-logy based on deep learning. China Academy of Engineering Physics, China, 2019(in Chinese).
贯丽丽. 基于深度学习的晶体缺陷分类检测技术研究. 硕士学位论文, 中国工程物理研究院, 2019.
48 Fu L. IFAC-Papers on Line, 2018, 51(17), 45.
49 Wei R F, Bi Y B. Materials, 2019, 12(10), 1681.
50 Zhan X L, Zhao W T. Laser & Optoelectronics Progress, 2020, 57(10), 143(in Chinese).
詹湘琳, 赵婉婷. 激光与光电子学进展, 2020, 57(10), 143.
51 Bang H T, Park S, Jeon H. Composite Structures, 2020, 246, 112405.
52 Di H, Ke X, Peng Z, et al. Optics and Lasers in Engineering, 2019, 117, 40.
53 Yu He, Song K, Dong H, et al. Optics and Lasers in Engineering, 2019, 122, 294.
54 Pan S J, Yang Q. IEEE Transactions on Knowledge & Data Engineering, 2010, 22(10), 1345.
55 Sun J, Wang P, Luo Y K, et al. IEEE Transactions on Instrumentation & Measurement, 2019, 68(12), 4787.
56 O'Leary J, Sawlani K, Mesbah A. IEEE Transactions on Semiconductor Manufacturing, 2020, 33(1), 72.
57 Zhang N, Donahue J, Girshick R, et al. In: European Conference on Computer Vision. Springer International Publishing, Germany,2014.
58 He K, Zhang X, Ren S, et al. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2014, 37(9), 1904.
59 Girshick R. In: Conference Record of the 2015 IEEE International Conference on Computer Vision. Santiago, Chile, 2015.
60 Ren S, He K, Girshick R, et al. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39(6), 1137.
61 Redmon J, Divvala S, Girshick R, et al. In: Conference Record of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA.2016, pp. 779.
62 Redmon J, Farhadi A. In: Conference Record of the 2017 IEEE Confe-rence on Computer Vision and Pattern Recognition. Honolulu, HI, USA, 2017, pp. 6517.
63 Redmon J, Farhadi A. In: Conference Record of the 2018 IEEE Confe-rence on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA, 2018.
64 Bochkovskiy A, Wang C Y, Liao H Y M. In: Conference Record of the 2020 IEEE Conference on Computer Vision and Pattern Recognition. USA, 2020.
65 Zhao X Y, Cai C P, Wang S, et al. Light Industry Machinery, 2019, 37(3), 60(in Chinese).
赵欣洋, 蔡超鹏, 王思, 等. 轻工机械, 2019, 37(3), 60.
66 Zhang Y Y, Li Y B, Wen Y T, et al. Acta Armamentarii, 2019, 40(11), 2329(in Chinese).
张玉燕, 李永保, 温银堂, 等. 兵工学报, 2019, 40(11), 2329.
67 Gao X, Jian M, Hu M, et al. Advances in Structural Engineering, 2019, 22(13), 2907.
68 Guo M H, Xu H W. Computer Systems & Applications, 2019, 28(11), 265.
69 Li Z J, Jiang X J, Zhu Z T, et al. Modular Machine Tool & Automatic Manufacturing Technique, 2019(9), 102(in Chinese).
利照坚, 江秀娟, 朱铮涛, 等. 组合机床与自动化加工技术, 2019(9), 102.
70 Peng Y, Xiao S H, Yuan J H, et al. Modular Machine Tool & Automatic Manufacturing Technique, 2020(3), 91(in Chinese).
彭煜, 肖书浩, 阮金华, 等. 组合机床与自动化加工技术, 2020(3), 91.
71 He Y, Song K, Meng Q, et al. IEEE Transactions on Instrumentation and Measurement, 2020, 69(4), 1493.
72 Tao X, Zhang D P, Wang Z H, et al. IEEE Transactions on Systems, Man and Cybernetics: Systems, 2020, 50(4), 1486.
73 Yuan D D, Yan X Y, Lu D D, et al. Construction Machinery and Equipment, 2020, 51(1), 23(in Chinese).
苑丹丹, 阎相伊, 路丹丹, 等. 工程机械, 2020, 51(1), 23.
74 Dai J F, Li Y, He K M, et al. In: Conference Record of the 2016 Conference on Neural Information Processing Systems. Barcelona, 2016.
75 Wei X, Wei D, Suo D, et al. IEEE Access, 2020, 8, 61973.
76 Zhang Y, Cheng X S, Chui H H, et al. Optics & Optoelectronic Technology, 2020, 18(3), 75(in Chinese).
张逸, 程筱胜, 崔海华, 等. 光学与光电技术, 2020, 18(3), 75.
77 Athanasiadis T, Mylonas P, Avrithis Y, et al. IEEE Transactions on Circuits & Systems for Video Technology, 2007, 17, 298.
78 Long J, Shelhamer E, Darrell T. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 39(4), 640.
79 Ronneberger O, Fischer P, Brox T. In: Conference Record of the 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention(MICCAI). Switzerland, 2015, pp. 234.
80 Badrinarayanan V, Kendall A. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 39(12), 2481.
81 Noh H, Hong S, Han B. In: Conference Record of the 2015 IEEE International Conference on Computer Vision( ICCV). Santiago, Chile, 2015, pp. 1520.
82 Liangchieh C, Papandreou G, Kokkinos I, et al. Computer Science, 2014(4), 357.
83 He K, Gkioxari G, Piotr D, et al. In: Conference Record of the 2017 IEEE International Conference on Computer Vision. Venice, Italy,2017, pp. 322.
84 Liu S, Qi L, Qin H, et al. In: Conference Record of the 2018 IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA, 2018, pp. 8759.
85 Liu H, Peng C, Yu C, et al. In: Conference Record of the 2019 IEEE Conference on Computer Vision and Pattern Recognition. Long Beach, CA, USA, 2019, pp. 6172.
86 Mohan R, Valada A. International Journal of Computer Vision, 2021,129,1551.
87 Han H, Gao C, Zhao Y, et al. Pattern Recognition Letters, 2018, 130, 234.
88 He T, Liu Y, Xu C, et al. IEEE Access, 2019, 7, 123453.
89 Dung C V, Anh L D. Automation in Construction, 2019, 99, 52.
90 Roberts G, Haile S Y, Sainju R, et al. Scientific Reports,2019,9(1),1.
91 Rahman M R, Chen H. IEEE Access, 2020, 8, 40547.
92 Zhang Q, Chang X, Bian S B, et al. IEEE Access, 2020, 8, 6997.
93 Han M, Wu Q X, Zeng X J. Computer Systems & Applications, 2020, 29(3), 100(in Chinese).
韩明, 吴庆祥, 曾雄军. 计算机系统应用, 2020, 29(3), 100.
[1] 张永志, 李旭英, 辛全忠, 孔祥明, 王永亮. 自组织CNN建模识别耐热钢金相组织研究[J]. 材料导报, 2022, 36(12): 21030032-6.
[2] 张永志, 辛全忠, 王永亮, 孔祥明, 刘昉, 杨再胜. 基于迁移学习的钢金相组织分类与识别方法的研究[J]. 材料导报, 2021, 35(24): 24152-24157.
[3] 黄炜, 葛培, 李萌, 许洪飞. 混杂纤维再生砖骨料混凝土正交试验及卷积神经网络预测分析[J]. 材料导报, 2021, 35(19): 19022-19029.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed