Please wait a minute...
材料导报  2022, Vol. 36 Issue (16): 20060292-8    https://doi.org/10.11896/cldb.20060292
  金属与金属基复合材料 |
镧系金属-有机框架材料作为荧光探针的研究进展
初红涛*, 尹杰, 林清, 隋秉蓉, 谭金铭, 苏立强, 马文辉
齐齐哈尔大学化学与化学工程学院,黑龙江 齐齐哈尔 161006
Research Progress of Lanthanide Metal-Organic Framework Materials as Fluorescent Probes
CHU Hongtao*, YIN Jie, LIN Qing, SUI Bingrong, TAN Jinming, SU Liqiang, MA Wenhui
College of Chemistry and Chemical Engineering, Qiqihaer University, Qiqihaer 161006, Heilongjiang, China
下载:  全 文 ( PDF ) ( 16438KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 金属-有机框架(Metal-organic frameworks, MOFs)材料是由配位键将金属离子与有机配体连接而形成的结构有序的网状配合物,在离子交换、气体分离及存贮、催化、荧光传感及药物输送等领域具有重要的应用价值。
   利用具有荧光发射特性的MOFs与客体分子作用后荧光强度的变化,可实现对目标组分的定量检测,而仅依靠单一配体发光的MOFs,定量方法易受外界条件的干扰,会影响结果准确性。金属离子和有机配体的性质决定了MOFs的荧光特性,是该领域学者们研究的重点。镧系元素的三价离子(Ln3+)具有未被完全充满的4f电子层结构,其荧光性能独特,易与氧、氮原子配位,且可与有机配体配位形成具有特殊拓扑结构的高配位配合物。Ln3+与有机配体形成的镧系金属-有机框架(Ln-MOFs)材料除了具有结构有序、比表面积大的特点外,同时结合了有机配体和镧系元素二者的荧光特性,作为比率型荧光探针被广泛应用。选择不同的有机配体及镧系元素,可开发出对不同组分产生响应的Ln-MOFs。
   本文对近年来Ln-MOFs在阴、阳离子以及小分子的荧光检测及温度传感方面的研究进展进行了综述,并对其检测结果、检测机理及影响因素等进行了分析,然后对Ln-MOFs材料作为荧光探针的设计理念进行了总结,最后对Ln-MOFs研究中存在的问题进行了分析,并对其未来发展进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
初红涛
尹杰
林清
隋秉蓉
谭金铭
苏立强
马文辉
关键词:  镧系金属-有机框架材料  荧光探针  三价镧系离子  发光功能应用    
Abstract: Metal-organic frameworks (MOFs) are ordered network complexes formed by the connection of metal ions with organic ligands coordination bonds, demonstrating high application potential in ion exchange, gas separation and storage, catalysis, fluorescence sensing, and drug delivery.
The quantitative detection of target components can be achieved by using changes in fluorescence intensity after the interaction between MOFs with fluorescence emission properties and guest molecules. For MOFs with a single ligand luminescence, the quantitative method is vulnerable to external interference, and the accuracy of the results is affected. The properties of metal ions and organic ligands determine the fluorescence properties of MOFs, which is the focus of research in this field. The trivalent lanthanide ion (Ln3+) has a 4f electron layer, which is incompletely filled, and exhibits unique fluorescence properties. Besides, it is prone to coordination with oxygen and nitrogen atoms. It can form high-coordination complexes with a particular topological structure by coordinating with organic ligands. Lanthanide metal-organic frameworks (Ln-MOFs) formed by Ln3+ and organic ligands are widely used as ratio fluorescent probes because of their ordered structure and high specific surface area, as well as the combined fluorescence properties of organic ligands and lanthanides. Ln-MOFs that respond to different components can be deve-loped by selecting different organic ligands and lanthanides.
This paper offers a retrospection of the research efforts with respect to the progress of Ln-MOFs in fluorescence detection and temperature sensing of anions, cations and small molecules. This paper also provides analysis of the detection results, detection mechanism and influencing factors. Moreover, we summarize the design concept of Ln-MOFs as fluorescent probes. Finally, we pay attention to the problems existing in the research on Ln-MOFs and focus on the prospect of its future development.
Key words:  Ln-MOF    fluorescent probe    trivalent lanthanide ion (Ln3+)    luminous function application
出版日期:  2022-08-25      发布日期:  2022-08-29
ZTFLH:  O657  
基金资助: 黑龙江省自然科学基金优秀青年项目(YQ2019H034);黑龙江省教育厅项目(135109201)
通讯作者:  *lange1979@163.com   
作者简介:  初红涛,工学博士,齐齐哈尔大学教授、硕士研究生导师。2005年3月毕业于齐齐哈尔大学分析化学专业,获得硕士学位;2014年11月毕业于哈尔滨工业大学化学工程与技术专业,获博士学位。2005年入职齐齐哈尔大学工作至今,主要从事新型荧光探针的设计及应用、色谱分析技术应用等研究,发表学术论文50余篇。
引用本文:    
初红涛, 尹杰, 林清, 隋秉蓉, 谭金铭, 苏立强, 马文辉. 镧系金属-有机框架材料作为荧光探针的研究进展[J]. 材料导报, 2022, 36(16): 20060292-8.
CHU Hongtao, YIN Jie, LIN Qing, SUI Bingrong, TAN Jinming, SU Liqiang, MA Wenhui. Research Progress of Lanthanide Metal-Organic Framework Materials as Fluorescent Probes. Materials Reports, 2022, 36(16): 20060292-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20060292  或          http://www.mater-rep.com/CN/Y2022/V36/I16/20060292
1 Bao Z B, Chang G G, Xing H B, et al. Energy & Environmental Science, 2016, 9(12), 3612.
2 Chowdhuri A R, Bhattacharya D, Sahu S K. Dalton Transactions, 2016, 45(7), 2963.
3 Li X, Xie Y J, Song B, et al. Angewandte Chemie International Edition, 2017, 56(10), 2689.
4 Allendorf M D, Bauer C A, Bhakta R K, et al. Chemical Society Reviews, 2009, 38(5), 1330.
5 Cui Y J, Yue Y F, Qian G D, et al. Chemical Reviews, 2012, 112(2), 1126.
6 Yang C, Fu L M, Wang Y, et al. Angewandte Chemie International Edition, 2004, 43(38), 5010.
7 Xu G W, Wu Y P, Dong W W, et al. Small, 2017, 13(22), 1602996.
8 Kampa M, Castanas E. Environmental Pollution, 2008, 151(2), 362.
9 Xu X Y, Yan B. Journal of Materials Chemistry C, 2016, 4(7), 1543.
10 Zhao B, Chen X Y, Cheng P, et al. Journal of the American Chemical Society, 2004, 126(47), 15394.
11 Hao J N, Yan B. Journal of Materials Chemistry C, 2014, 2(33), 6758.
12 Zhou J M, Shi W, Li H M, et al. The Journal of Physical Chemistry C, 2013, 118(1), 416.
13 Wang L H, He J F, Yang Q, et al. Environmental Pollution, 2017, 230, 902.
14 Zhang Q, Wang J, Kirillov A M, et al. ACS Applied Materials & Interfaces, 2018, 10(28), 23976.
15 Barbier O, Arreola-Mendoza L, Del Razo L. Chemico-biological Interactions, 2010, 188(2), 319.
16 Yang Z R, Wang M M, Wang X S, et al. Analytical Chemistry, 2017, 89(3), 1930.
17 Koh A, Kang D, Xue Y, et al. Science Translational Medicine, 2016, 8(366), 165.
18 Xu X Y, Yan B. Journal of Materials Chemistry C, 2018, 6(7), 1863.
19 Guo X Y, Zhao F, Liu J J, et al. Journal of Materials Chemistry A, 2017, 5(37), 20035.
20 Liu Q Q, Zhang S H, Yang J, et al. The Analyst, 2019, 144(15), 4534.
21 Gao W, Liu F, Zhang B Y, et al. Dalton Transactions, 2017, 46(40), 13878.
22 Ma J J, Liu W S. Dalton Transactions, 2019, 48(32), 12287.
23 Xu H L, Li Q Y, Zhang L C, et al. Analytical Chemistry, 2016, 88(16), 8137.
24 Senoh H, Aiso S, Arito H, et al. Journal of Occupational Health, 2004, 46(6), 429.
25 Li Y, Zhang S S, Song D T. Angewandte Chemie International Edition, 2013, 52(2), 710.
26 Xu X Y, Yan B. Journal of Materials Chemistry A, 2017, 5(5), 2215.
27 Duan L, Zhang C, Cen P, et al. CrystEngComm, 2020, 22(10), 1695.
28 Chen D M, Zhang N N, Liu C S, et al. Journal of Materials Chemistry C, 2017, 5(9), 2311.
29 Lee W E, Jin Y J, Park L S, et al. Advanced Materials, 2012, 24(41), 5604.
30 Peyvandi A, Soroushian P, Abdol N, et al. Carbon, 2013, 63, 175.
31 Wu J X, Yan B. Dalton Transactions, 2017, 46(21), 7098.
32 Miller S E, Teplensky M H, Moghadam P Z, et al. Interface Focus, 2016, 6(4), 20160027.
33 Soldatkina O V, Soldatkin O O, Velychko T P, et al. Bioelectrochemi-stry, 2018, 124, 40.
34 Yin H Q, Wang X Y, Yin X B. Journal of the American Chemical Society, 2019, 141(38), 15166.
35 Banerjee R, Phan A, Wang B, et al. Science, 2008, 319(5865), 939.
36 Hao Y B, Shao Z S, Cheng C, et al. ACS Applied Materials & Interfaces, 2019, 11(35), 31755.
37 Ren J, Xiao Y J, Singh L S, et al. Cancer Res, 2006, 66(6), 3006.
38 Zhang S Y, Shi W, Cheng P, et al. Journal of the American Chemical Society, 2015, 137(38), 12203.
39 Liu J L, Wong M H. Environment International, 2013, 59, 208.
40 Gao Y X, Yu G, Liu K, et al. Sensors and Actuators B: Chemical, 2018, 257, 931.
41 Genestra M. Cellular Signalling, 2007, 19(9), 1807.
42 Li H, Cao X Y, Fei X Y, et al. Journal of Materials Chemistry B, 2019, 7(18), 3027.
43 Yuan Y Y, Yang S L, Zhang C, et al. CrystEngComm, 2018, 20(43), 6989.
44 Gadelha I C N, Fonseca N B S, Oloris S C S, et al. The Scientific World Journal, 2014, 1, 11.
45 Luo T Y, Das P, White D L, et al. Journal of the American Chemical Society, 2020, 142(6), 2897.
46 Zheng S H, Chen W B, Tan D Z, et al. Nanoscale, 2014, 6(11), 5675.
47 Cui Y J, Xu H, Yue Y F, et al. Journal of the American Chemical Society, 2012, 134(9), 3979.
48 Rao X T, Song T, Gao J K, et al. Journal of the American Chemical Society, 2013, 135(41), 15559.
[1] 张䶮, 朱永乐, 黄丽娟, 王永安, 赵瑾, 聂志勇. 介孔二氧化硅门控开关在分析检测中的研究进展[J]. 材料导报, 2021, 35(15): 15081-15087.
[2] 初红涛, 姚冬, 陈嘉琪, 于淼. 金属有机骨架材料作为荧光探针的研究进展[J]. 材料导报, 2020, 34(13): 13114-13120.
[3] 杨历, 刘远洲, 李子院, 覃爱苗. 硫化铜量子点的研究进展[J]. 材料导报, 2018, 32(21): 3737-3742.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed