Please wait a minute...
材料导报  2021, Vol. 35 Issue (z2): 669-677    
  高分子与聚合物基复合材料 |
动/静荷载作用纤维-矿粉-聚苯乙烯混凝土吸能特征研究
于泽明1,2, 陈艳3, 马嵘萍1,2, 胡晓辰1,2, 吕祥锋1,2
1 北京科技大学土木与资源工程学院,北京 100083
2 北京科技大学城市地下空间工程北京市重点实验室,北京 100083
3 北京国电经纬工程技术有限公司,北京 100192
Study on Energy Absorption Characteristics of BF-SP-EPS Concrete Under Dynamic/Static Load
YU Zeming1,2, CHEN Yan3, MA Rongping1,2, HU Xiaochen1,2, LYU Xiangfeng1,2
1 School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
2 Beijing Key Laboratory of Urban Underground Space Engineering, University of Science and Technology Beijing, Beijing 100083, China
3 Beijing Guodian Jingwei Engineering Technology Co., Ltd., Beijing 100192, China
下载:  全 文 ( PDF ) ( 3936KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 地下空间工程常受动载作用后变形破坏,防护结构吸收动力能量可降低其破坏程度,然而有效吸收冲击能量的吸能混凝土材料及其力学性能仍不清晰。基于响应面法中心优化组合原理,采用动/静载联合同步声发射(AE)监测试验方法,借助高精度微观电镜断口形貌扫描技术(SEM),研究聚苯乙烯泡沫(EPS)、矿粉(SP)、玄武岩纤维(BF)关键因子影响混凝土变形的能量蚕食过程,分析玄武岩纤维-矿粉-聚苯乙烯泡沫(BF-SP-EPS)与水泥基体桥连作用关系,得到动/静载荷作用下BF-SP-EPS混凝土微观吸能规律。研究结果表明,EPS颗粒改变混凝土孔隙结构分布状态,动/静载荷作用下BF-SP-EPS混凝土破坏模式均表现为由脆性破坏转向延性破坏,呈现出破碎压密和能量蚕食耗散特征,大幅度提高了变形韧性量,为能量吸收提供有效变形空间; BF-SP-EPS与水泥基体桥连作用对混凝土吸能性能提升显著,与未掺量同类混凝土相比吸能量达71 J,冲击吸收能量提升50%;建立渴求函数优化模型,得到以抗压性能和吸收能为响应目标的最优化BF-SP-EPS配比为:33.7vol%、17wt%、0.13vol%,并采用相同条件试验方法测试验证优化配比的正确性,研究结果为地下空间工程结构吸能防护安全提供有力理论依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
于泽明
陈艳
马嵘萍
胡晓辰
吕祥锋
关键词:  动/静载作用  响应面法(RSM)  玄武岩纤维-矿粉-聚苯乙烯(BF-SP-EPS)混凝土  力学规律  变形破坏特征  吸收能    
Abstract: Underground space engineering often suffers from deformation and failure after dynamic load, and the damage degree can be reduced by absorbing dynamic energy by protective structure. However, the energy-absorbing concrete material which can effectively absorb impact energy and its mechanical properties are still unclear. Based on the central optimal combination principle of response surface method, the dyna-mic/static load combined synchronous acoustic emission (AE) monitoring test method was adopted, and the deformation energy encroachment process of concrete affected by key factors of expanded polystyrene foam (EPS), slag powder (SP) and basalt fiber (BF) and cement matrix was studied by means of high-precision scanning electron microscope(SEM). The results show that EPS particles change the distribution of pore structure of concrete, and the failure mode of BF-SP-EPS concrete under dynamic and static load changes from brittle failure to ductile failure, showing the characteristics of crushing compaction and energy dissipation, greatly improving the deformation toughness and providing effective deformation space for absorbed energy; the bridge effect of BF-SP-EPS and cement matrix can significantly improve the energy absorption performance of concrete. Compared with the same kind of concrete without admixture, the absorbed energy reaches 71J, and the impact energy absorption increases by 50%; the craving function optimization model is established, and the optimal BF-SP-EPS ratios with the compression resis-tance and absorbed energy as the response target are 33.7vol%, 17wt% and 0.13vol%. The correctness of the optimal ratio is verified by the same condition test method. The research results provide a strong theoretical basis for the energy absorption protection safety of underground space engineering structures.
Key words:  dynamic/static load    response surface method    BF-SP-EPS concrete    mechanics law    deformation and failure characteristics    absorbed energy
                    发布日期:  2021-12-09
ZTFLH:  TU528  
基金资助: 北京市优秀人才培养资助青年拔尖个人项目(2017000021223ZK04);中央高校基本业务费资助项目(FRF-TP-19-009B1)
通讯作者:  lvxiangfeng2006@126.com   
作者简介:  于泽明,山东东营人,现为北京科技大学土木与资源工程学院硕士研究生,在吕祥锋教授的指导下进行地下工程灾害力学与防护研究。
吕祥锋,河北广宗人,工学博士,北京科技大学教授、博士生导师,主要从事地下空间工程建造服役安全控制方面的教学和科学研究工作。主持完成国家重点研发课题、国家自然科学基金项目、中央引导地方科技发展专项、中央高校基本科研业务费、北京市科技专项等国家、省部级和企业重点科技攻关课题25项,社会和经济效益显著。第一完成人荣获国家教育部科学技术进步奖二等奖1项、北京市科学技术进步奖二等奖1项、北京市技术发明奖三等奖1项和省部级科技奖一等奖3项、发明金奖2项;发表学术论文107篇;授权国家专利52项、PCT专利3项、软著12项;编制标准4部;出版学术专著5部。先后入选北京市科技新星计划、北京市优秀青年人才、北京市“高创计划”青年拔尖人才和北京市百千万人才工程,并获得茅以升北京青年科技奖、茅以升土力学及岩土工程青年奖。
引用本文:    
于泽明, 陈艳, 马嵘萍, 胡晓辰, 吕祥锋. 动/静荷载作用纤维-矿粉-聚苯乙烯混凝土吸能特征研究[J]. 材料导报, 2021, 35(z2): 669-677.
YU Zeming, CHEN Yan, MA Rongping, HU Xiaochen, LYU Xiangfeng. Study on Energy Absorption Characteristics of BF-SP-EPS Concrete Under Dynamic/Static Load. Materials Reports, 2021, 35(z2): 669-677.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/Iz2/669
1 黄茂松, 曹杰. 岩石力学与工程学报, 2010, 29(2), 271.
2 王晓睿, 张树君, 黄至全. 岩土力学, 2012, 33(9), 2869.
3 谢和平, 高峰, 鞠杨, 等. 工程科学与技术, 2017, 49(1), 1.
4 吕祥锋, 潘一山, 李忠华. 材料导报, 2012, 26(2), 112.
5 赵武胜, 陈卫忠, 马少森, 等. 岩土力学, 2018, 39(3), 1207.
6 马芹永, 高常辉. 岩土力学, 2018, 39(11), 3921.
7 石文博, 缪林昌, 王佳奇, 等. 东南大学学报(自然科学版), 2016, 46(1), 179.
8 张文华, 吕毓静, 刘鹏宇. 材料导报:综述篇, 2019, 33(7), 2214.
9 白二雷, 许金余. 高志刚. 等. 建筑材料学报, 2012, 15(1), 53.
10 叶邦土, 蒋金洋, 王文灏, 等. 材料导报, 2013, 27(1), 102.
11 Ralegaonkar R, Gavali H, Aswath P, et al. Construction and Building Materials, 2018, 164, 589.
12 Algin Z, Ozen M. Construction and Building Materials, 2018, 186, 678.
13 王静文, 王伟. 材料导报:研究篇, 2019, 33(12), 4092.
14 周铉棠, 戴绍斌, 马保国, 等. 混凝土, 2020(9), 92.
15 吕官记, 季韬. 建筑材料学报.
16 中华人民共和国国家标准. GB/T 50081-2019,混凝土物理力学性能试验方法标准[S],中国建筑工业出版社, 2019.
17 高谦, 杨晓炳, 温震江, 等. 湖南大学学报(自然科学版), 2019, 46(6), 47.
18 刘树龙, 王发刚, 李公成, 等. 复合材料学报,2021,38(8),2724.
19 Harrington E C. Industrial Quality Control, 1965, 21, 494.
20 Derriger G, SuichR. Journal of Quality Technology, 1980, 12(4), 214.
21 李升涛, 陈徐东, 张锦, 华等. 建筑材料学.http://kns.cnki.net/kcms/detail/31.1764.tu.20201028.0949.018.html.
22 赖于树, 熊燕, 程龙飞. 建筑材料学报, 2015, 18(3), 380.
23 于江, 袁飞, 秦拥军. 三峡大学学报(自然科学版), 2020, 42(5), 61.
24 孙浩凯, 高阳, 郑新雨, 等. 建筑材料学.http://kns.cnki.net/kcms/detail/31.1764.TU.20201118.1607.004.html.
[1] 陈定宁, 沈昊宇, 成瑾瑾, 胡美琴. “枣糕状”结构杂多酸离子液体负载磁性复合材料的制备及超声脱硫的催化性能[J]. 材料导报, 2021, 35(12): 12181-12189.
[2] 王静文, 王伟. 玄武岩纤维增强泡沫混凝土响应面多目标优化[J]. 材料导报, 2019, 33(24): 4092-4097.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed