Please wait a minute...
材料导报  2021, Vol. 35 Issue (z2): 28-32    
  无机非金属及其复合材料 |
水热炭化法制备生物质基碳纳米材料研究进展
文世涛, 仲美娟, 尚莉莉, 田根林, 杨淑敏, 马建锋, 刘杏娥
国际竹藤中心,竹藤科学与技术重点实验室,北京 100102
Research Advance of Biomass-based Carbon Nanomaterials by Hydrothermal Carbonization
WEN Shitao, ZHONG Mejuan, SHANG Lili, TIAN Genlin, YANG Shumin, MA Jianfeng, LIU Xing'e
Key Lab of Bamboo and Rattan Science and Technology, International Centre for Bamboo and Rattan, Beijing 100102, China
下载:  全 文 ( PDF ) ( 3890KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 碳纳米材料因具有良好的吸附、电化学、催化以及气体贮存性能,被认为是材料科学研究中的热点明星。碳纳米材料大致分为富勒烯、碳纳米管、石墨烯、碳微球、碳纳米杂化材料等。碳纳米材料的研究重点是探索简易、环保、低能耗、过程可控的制备方法。现在主要的研究手段是利用可再生的木质纤维原料衍生物、纤维素、半纤维以及构成这些聚糖的结构单糖等碳水化合物作为碳源,进行水热炭化反应。本文详细介绍了生物质水热炭化过程中所发生的降解及炭化反应,着重介绍了水热炭化制备生物质碳微球以及生物质碳包覆纳米颗粒过程中涉及的成核生长机理。在此基础上,还分别论述了碳微球、碳包覆纳米复合材料的合成工艺。同时对上述碳纳米材料在水污染治理、电化学、催化、生物及传感器领域等方面进行了全面的概括。最后,本文总结了前人研究工作中存在的几点问题并提出了相应的建议。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
文世涛
仲美娟
尚莉莉
田根林
杨淑敏
马建锋
刘杏娥
关键词:  生物质  水热炭化  碳纳米材料  反应机理    
Abstract: The research on carbon nanomaterialshas become a hot area, motivated by its potential applications in adsorbents, catalyst supports, gas storage and electrochemistry. Carbon nanomaterials consist of fullerenes, carbon nanotubes, graphene, carbon microspheres, and carbon nano-hybrids. Exploring facile, environmentally friendly, low energy consumption and process controllable routes to produce novel functional carbon nanomaterials is a big challenge. Amongst various techniques, the hydrothermal carbonization (HTC) process of sustainable lignocellulosic biomass (either of isolated carbohydrates or its derivatives) is a promising candidate for the synthesis of novel carbon-based materials with a wide variety of potential applications. Firstly, the mechanism and features of hydrothermal carbonization are presented. Specifically, the core growth mechanism of carbon microspheres and carbon encapsulated nanoparticles were introduced. Subsequently, the preparation process of carbon microspheres, carbon encapsulated hybrids, functional inorganic hollow and complex carbon nanomaterials, porous carbon materials, carbon nanotube and three-dimensional carbon structure materials was briefly reviewed. Meanwhile, their applications in water pollution treatment, electrochemistry, catalysts, biology and sensors were summarized. Finally, the problems existing in the hydrothermal carbonization reaction and the future research directions are also proposed.
Key words:  biomass    hydrothermal carbonization    carbon nanomaterials    formation mechanisms
                    发布日期:  2021-12-09
ZTFLH:  Q5  
  TG1  
基金资助: “十三五”国家重点研发计划(2017YFD0600804)
通讯作者:  majf@icbr.ac.cn   
作者简介:  文世涛,中国林业科学研究院国际竹藤中心硕士研究生。研究方向为水热炭制备及吸附应用研究。
马建锋,副研究员,主要研究方向为生物质基碳材料应用研究。
引用本文:    
文世涛, 仲美娟, 尚莉莉, 田根林, 杨淑敏, 马建锋, 刘杏娥. 水热炭化法制备生物质基碳纳米材料研究进展[J]. 材料导报, 2021, 35(z2): 28-32.
WEN Shitao, ZHONG Mejuan, SHANG Lili, TIAN Genlin, YANG Shumin, MA Jianfeng, LIU Xing'e. Research Advance of Biomass-based Carbon Nanomaterials by Hydrothermal Carbonization. Materials Reports, 2021, 35(z2): 28-32.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/Iz2/28
1 Bergius F. Knapp: halle/saale, Germany, 1913, pp.41.
2 A Jain, R Balasubramanian, MP Srinivasan. Chemical Engineering Journal, 2016, 283, 789.
3 Falco C, Baccileb N, Titirici M M. Green Chemistry, 2011, 13(11), 3273.
4 Baccile N,Falco C, Titirici M M. Green Chemistry, 2014, 46(5), 4839.
5 Kruse A, Funke A, Titirici M M.Current Opinion Chemical Biology, 2014, 17(3), 515.
6 Titirici M M, Thomas A, Yu S H, et al.Chemistry of Materials, 2007, 19(7), 4205.
7 Titirici M M, Antonietti M, Baccile N.Green Chemistry, 2008, 10(11), 1204.
8 Xuan S H, Hao L Y, Jiang W Q, et al.Nanotechnology, 2007, 18(3), 035602.
9 Wu T, Liu Y, Zeng X,et al.ACS Applied Materials & Interfaces, 2016, 8(11), 7370.
10 Zhao H, Cui H J, Fu M L.Journal of Colloid and Interface Science, 2016, 461(1), 20.
11 Liu Y, Li L, Xie C X, et al.Chemical Engineering Journal, 2016, 303: 31.
12 Ma J F, Xing J X, Wang K, et al. Carbohydrates Polymer, 2016, 164: 127.
13 Zhang W M, Wu X L, Hu J S, et al.Advanced Functional Materials, 2008, 18(24), 3941.
14 Li H, Li Y, Zhang Y, et al.Journal of Nanoparticle Research, 2015, 17(9), 1.
15 Li K X, Liu S F, Shu T, et al.Materials Chemistry and Physics, 2016, 181, 518.
16 Wang Y X, Sun H Q, Duan X G, et al.Applied Catalysis B: Environmental, 2015,172-173, 73.
17 Wu P, Du N, Zhang H, et al. Journal of Physical Chemistry C, 2011, 115(9), 3612.
18 Hong S Y, Chun D H, Yang J, et al. Nanoscale, 2015, 7(40), 16616.
19 Zha G J, Yu L S.Fullerenes Nanotubes and Carbon Nanostructures, 2016, 2(24), 139.
20 Qian H, Lin G, Zhang Y, et al.Nanotechnology, 2007, 18(35), 355602.
21 Yu J, Yu X, Huang B, et al.Crystal Growth and Design, 2009, 9(3), 1474.
22 Patrinoiu G, Calderon-Moreno J M, Birjega R, et al.RSC Advances, 2015, 5(40), 31768.
23 Qian H S, Yu S H, Luo L B, et al.Chemistry of Materials, 2006, 18(8), 2102.
24 Ikeda S, Tachi K, Ng Y H, et al.Chemistry of materials, 2007, 19(17), 4335.
25 Yan Y, Yang H, Zhang F, et al. Small, 2006, 2(4), 517.
26 Sun X, Li Y.Journal of Colloid and Interface Science, 2005, 291(1), 7.
27 Wen Z, Wang Q, Li J. Advanced Functional Materials, 2008,18(6), 959.
28 Fan L, Tang L, Gong H F, et al. Chemistry of Materials, 2012, 22, 16376.
29 Alatalo S M, Mákilá E, Repo E, et al. Green Chemistry, 2016,18(4), 1137.
30 Joo J B, Kim Y J, Kim W, et al. Catalysis Communications, 2008, 10(3), 267.
31 Gong Y, Wang H, Wei Z, et al. ACS Sustainable Chemistry & Enginee-ring, 2014, 2(10), 2435.
32 Liu R, Mi S, Li Y Y, et al. Science China Chemistry, 2016, 59(4), 394.
33 Wu T, Liu Y, Zeng X, et al. ACS Applied Materials & Interfaces, 2016, 8(11), 7370.
34 Liang P, Zhang H, Zhang H J, et al.ACS Applied Materials & Interfaces, 2016, 8(7), 4745.
35 Wang Q, Li H, Chen L, et al. Carbon, 2001, 39(14), 2211.
36 Hong S Y, Chun D H, Yang J, et al. Nanoscale, 2015, 7(40), 16616.
37 Zhu X, Liu Y, Zhou C, Luo G, et al. Carbon, 2014, 77, 627.
38 Xu Y J, Weinberg G, Liu X. et al. Advanced Functional Materials, 2008,18(22), 3613.
39 Demir-Cakan R, Baccile N, Antonietti M, et al.Chemistry of Materials, 2009, 21(3), 484.
40 Yu C, Sun Y, Fan X, et al. Particle & Particle Systems Characterization, 2013, 30(7), 637.
41 Chen M, Shao L L, Li J J, et al. RSC Advances, 2016, 6(42), 35228.
42 Liu J, Ye J, Xu C. Electrochemistry Communications, 2007, 9(9), 2334.
43 Qian H S, Antonietti M, Yu S H.Advanced Functional Materials, 2007, 17(4), 637.
44 Yan Q, Street J, Yu F.Biomass & Bioenergy, 2015, 83: 85.
45 Zhao N, Wu S, He C, et al.Carbon, 2013, 57(6), 130.
46 Zhang W M, Hu J S, Guo Y G, et al.Advanced Materials, 2008, 20(6), 1160.
47 Zhang L M, You T T, Zhou T, et al. ACS Applied Materials & Interfaces, 2016, 8(22), 13918.
48 Shang M, Wang W, Xu H. et al.Crystal Growth and Design, 2008, 9(2), 991.
49 Wang C H, Chu X F, Wu M M. Sensors and Actuators B: Chemical, 2007, 120(2), 508.
50 Tyagi A, Tripathi K M, Singh N, et al.RSC Advances, 2016, 6(76), 72423
[1] 邵丹, 王美玲, 陈志炎, 高亚军, 庞欢. 碳材料在色素电化学传感中的研究进展[J]. 材料导报, 2021, 35(z2): 22-27.
[2] 张小涛, 李庆超, 李东旭. 碳基材料对水泥基材料性能的影响[J]. 材料导报, 2021, 35(Z1): 220-224.
[3] 周顺, 周涵, 李东旭. 硅基材料和矿渣应用于水泥基材料的研究进展[J]. 材料导报, 2021, 35(Z1): 284-287.
[4] 杨达, 卢明阳, 宋迪, 白书霞, 张国华, 胡秀颖, 庞来学. 地质聚合物水泥的研究进展[J]. 材料导报, 2021, 35(Z1): 644-649.
[5] 陈侣存, 崔雯, 陈鹏, 李康璐, 董帆, 王法理. 宽带隙金属氧化物材料光催化降解苯系物:反应机理和改性策略[J]. 材料导报, 2021, 35(21): 21001-21011.
[6] 李涛, 何松, 林晓莹, 郝世吉, 檀付瑞, 杨震宇, 陈德良, 杨华明. 农林废弃生物质资源精深加工技术进展[J]. 材料导报, 2021, 35(19): 19001-19014.
[7] 胡耀强, 房得珍, 叶秀深, 张慧芳, 刘海宁, 吴志坚. 西瓜皮基生物质碳气凝胶的制备及对染料的吸附[J]. 材料导报, 2021, 35(11): 11007-11012.
[8] 王金朋, 薛志超, 马颖, 李洁, 刘思丹, 孙红. 基于第一性原理的锂空气电池Si掺杂MoS2正极催化氧还原反应机理研究[J]. 材料导报, 2021, 35(10): 10001-10007.
[9] 赵欢欢, 宋香琳, 程灿, 张利亚, 王留成. 麦秸生物质炭对Pb(Ⅱ)的吸附研究[J]. 材料导报, 2020, 34(Z2): 112-116.
[10] 王德军, 李慧, 姜锡仁, 赵朝成, 赵玉慧, 邓春梅, 王鑫平. 高级氧化技术去除水环境中多环芳烃的研究进展[J]. 材料导报, 2020, 34(Z2): 507-512.
[11] 张超, 张利, 刘兴华, 陈琳, 杨永珍, 于世平. 碳纳米材料的抗菌性及在生物医学中的应用研究进展[J]. 材料导报, 2020, 34(Z1): 53-57.
[12] 张文林, 冉奋. 具有高比电容的蘑菇衍生碳材料[J]. 材料导报, 2020, 34(12): 12010-12014.
[13] 黄建成, 丁冬, 李玉婷, 张慧芳, 刘海宁, 胡耀强, 叶秀深, 吴志坚. 松针基碳电极的制备及对碱/碱土金属离子的电吸附[J]. 材料导报, 2020, 34(12): 12015-12019.
[14] 孔令宇, 黄慧娟, 杨喜, 马建锋, 尚莉莉, 刘杏娥. 生物质基炭气凝胶复合材料在超级电容器中应用的研究进展[J]. 材料导报, 2019, 33(Z2): 32-37.
[15] 胡厅, 万红, 华叶, 龚瑾瑜, 陈兴宇. 石墨表面TiC梯度涂层的制备及结构调制[J]. 材料导报, 2019, 33(z1): 74-77.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed