Please wait a minute...
材料导报  2021, Vol. 35 Issue (Z1): 386-388    
  金属与金属基复合材料 |
多线切割工艺对单晶锗损伤层及几何参数的影响
李聪, 李志远, 陶术鹤
中国电子科技集团第四十六研究所,天津 300220
Effects of Multi-wire Sawing Process on the Damage Layer and Geometric Parameters of the Single Crystal Germanium
LI Cong, LI Zhiyuan, TAO Shuhe
China Electronics Technology Group Corporation NO.46 Research Institute, Tianjin 300220, China
下载:  全 文 ( PDF ) ( 3392KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作集中研究磨料粒径、进给速度及切割线径对单晶锗片损伤层及几何参数的影响。结果表明:在切割过程中,磨料粒径与锗片损伤层深度及表面粗糙度呈正比关系,采用3 000#磨料切割时,损伤层深度为6 μm,表面粗糙度为0.285 μm;进给速度的降低会降低锗棒在切割过程中的温度变化,从而降低锗片的几何参数;采用3 000#碳化硅微粉,100 μm/min进给速度,0.09 mm切割线的切割工艺,能够获得表面质量优异、几何参数小、切割损耗小的锗片。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李聪
李志远
陶术鹤
关键词:  磨料粒径  锗片  进给速度  切割线径    
Abstract: The research is concentrated on effects of the size of abrasive particles, feeding speed and the diameter of wire on the damage layer and geometric parameters of the single crystal germanium. The results show that the damage layer and the roughness increase with the size of abrasive particles during the sawing. The depth of damage layer reaches 6 μm and the roughness reaches 0.285 μm when use 3 000# abrasive particles during sawing;Temperature variation during sawing can be reduced by reducing the feeding speed which can reduce the geometric parameters of the germanium wafer; High quality surface, less geometric parameters and loss can be obtained by using 3 000# abrasive particles, feeding speed of 100 μm/min and wire of 0.09 mm in diameter.
Key words:  size of abrasive particles    germanium wafer    feeding speed    diameter of wire
                    发布日期:  2021-07-16
ZTFLH:  TN305.1  
通讯作者:  496097237@qq.com   
作者简介:  李聪,毕业于东北大学材料工程专业,硕士。主要从事硅、锗等半导体衬底材料加工技术的研究。
引用本文:    
李聪, 李志远, 陶术鹤. 多线切割工艺对单晶锗损伤层及几何参数的影响[J]. 材料导报, 2021, 35(Z1): 386-388.
LI Cong, LI Zhiyuan, TAO Shuhe. Effects of Multi-wire Sawing Process on the Damage Layer and Geometric Parameters of the Single Crystal Germanium. Materials Reports, 2021, 35(Z1): 386-388.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/IZ1/386
1 Claeys C'Simoen E. Radiation effects in advanced semiconductor materials and devices, Elsevier Science, Amsterdam, 2007.
2 吕菲,赵权,刘春香,等.半导体技术, 2008, 33(12), 1077.
3 Ariga Y, US Patent 6652356, 2003.
4 Gao Yufei, Ge Peiqi, Liu Tengyun. Materials Science in Semiconductor Processing, 2016, 56,106.
5 Mouna Hecini, Nadjib Drouiche. Journal of Crystal Growth, 2016, 453,143.
6 Sumeet Bhagavat, Imin Kao. Machine Tools & Manufacture, 2008,48, 95.
7 Lundt H, Huber L, Wiesner P. US Patent 6773333, 2004.
8 张立,于晋京,李耀东,等,半导体技术, 2011, 36(5),368.
[1] 胡扬轩,邓朝晖,万林林,李 敏. 用于蓝宝石材料加工的新型超精密抛光技术及复合抛光技术研究进展[J]. 《材料导报》期刊社, 2018, 32(9): 1452-1458.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed