Please wait a minute...
材料导报  2021, Vol. 35 Issue (Z1): 347-351    
  金属与金属基复合材料 |
钛基复合材料激光选区熔化增材制造成形技术研究进展
朱冬1,2, 张亮2,3, 吴文恒2,3, 卢林2,3, 倪晓晴2,3, 宋佳2,3, 赵金猛1,2, 朱文华1, 顾孙望4, 单小龙5
1 上海第二工业大学工学部,上海 201209
2 上海材料研究所,上海 200437
3 上海3D打印材料工程技术研究中心,上海 200437
4 中天上材增材制造有限公司,南通 226000
5 上海中天铝线有限公司,上海 201100
Research Progress of Selective Laser Melting Additive Manufacturing Technology of Titanium Matrix Composites
ZHU Dong1,2, ZHANG Liang2,3, WU Wenheng2,3, LU Lin2,3, NI Xiaoqing2,3, SONG Jia2,3, ZHAO Jinmeng1,2, ZHU Wenhua1, GU Sunwang4, SHAN Xiaolong5
1 Faculty of Engineering, Shanghai Polytechnic University, Shanghai 201209, China
2 Shanghai Research Institute of Materials, Shanghai 200437, China
3 Shanghai Engineering Research Center of 3D Printing Materials, Shanghai 200437, China
4 ZTT SRIM Additive Manufacturing Co., Ltd,Nantong 226000,China
5 Shanghai Zhongtian Aluminum Wire Co., Ltd,Shanghai 201100,China
下载:  全 文 ( PDF ) ( 3255KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 钛基复合材料相对于钛合金具有更高的硬度、强度和耐磨性,可以进一步扩大钛合金在航空航天、海洋、医疗等领域的应用范围。现阶段钛基复合材料的制备方法可以分为两大类:第一,传统方法(例如熔炼和铸造)。该方法存在着能耗大、成本高的问题。第二,激光选区熔化技术。该技术具有加工时间短、成形精度高、不需要制备模具的优点,但在加工过程中还存在着容易球化、开裂、降低成形件塑性等缺点。本文综述了当前国内外钛基复合材料的研究进展,包括增强体以及工艺参数调控对显微组织、成形质量及性能的影响,并结合现阶段研究现状对后续发展方向进行一定的讨论和展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱冬
张亮
吴文恒
卢林
倪晓晴
宋佳
赵金猛
朱文华
顾孙望
单小龙
关键词:  钛基复合材料  增强体  激光选区熔化    
Abstract: Compared with titanium alloys, titanium-based matrix composites have higher hardness, strength and wear resistance, which can further expand the application scope of titanium alloys in aerospace, marine, medical and other fields. At the present, the preparation methods of titanium matrix composites can be divided into two categories: first, traditional methods, such as smelting and casting, have the problems of high energy consumption and high cost; secondly, the laser selective melting technology has the advantages of short processing time, high forming precision and no need to prepare the mold, but it also has some disadvantages such as easy spheroidization, cracking and reducing the plasticity of the forming part. This article reviews the current research progress of titanium-based matrix composites at home and abroad, including the inf-luence of reinforcement and process parameters on microstructure, forming quality and performance, and combines the current research situations to discuss and prospect the future development direction.
Key words:  titanium-based matrix composites    reinforcements    laser selective melting
                    发布日期:  2021-07-16
ZTFLH:  TG156.9  
  TB31  
基金资助: 上海市青年科技启明星计划(18QB1400600);上海第二工业大学研究生项目资金(EGD19YJ0086)
通讯作者:  lzhang0126@hotmail.com   
作者简介:  朱冬,现为上海第二工业大学硕士研究生,在张亮高级工程师的指导下进行研究。目前主要研究方向为增材制造用钛及钛基复合材料。张亮,2013年博士毕业于荷兰代尔夫特理工大学,现任职于上海材料研究所,担任上海3D打印材料工程技术研究中心研发总监,主要从事金属3D打印、材料基因组等前沿科技的研究。入选上海市青年科技启明星计划、上海科学院/上海产业技术研究院“创新先锋”计划、虹口青年拔尖英才计划。目前担任上海材料研究所第十一届技术委员会委员和上海3D打印材料工程技术研究中心技术委员会委员。主持了上海市科委、上海科学院及上海材料所等多项科研课题,成功研发出航空航天、模具用钛合金、高温合金、模具钢等3D打印用高品质金属粉末耗材。
引用本文:    
朱冬, 张亮, 吴文恒, 卢林, 倪晓晴, 宋佳, 赵金猛, 朱文华, 顾孙望, 单小龙. 钛基复合材料激光选区熔化增材制造成形技术研究进展[J]. 材料导报, 2021, 35(Z1): 347-351.
ZHU Dong, ZHANG Liang, WU Wenheng, LU Lin, NI Xiaoqing, SONG Jia, ZHAO Jinmeng, ZHU Wenhua, GU Sunwang, SHAN Xiaolong. Research Progress of Selective Laser Melting Additive Manufacturing Technology of Titanium Matrix Composites. Materials Reports, 2021, 35(Z1): 347-351.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/IZ1/347
1 Zhu Y, Liu D, Tian X, et al. Materials & Design, 2014, 56,445.
2 Peters M, Hemptenmacher J, et al. Titanium and titanium alloys: fundamentals and applications, Wiley-VCH Verlag GmbH & Co. KGaA, 2003.
3 Carroll B E, Palmer T A, Beese A M. Acta Materialia, 2015, 87,309.
4 Banerjee D, Williams J. Acta Materialia, 2013, 61(3), 844.
5 Attar H, Calin M, Zhang L C, et al. Materials Science & Engineering A, 2014, 593(2),170.
6 Gu D, Hagedorn Y C, Meiners W,et al. Acta Materialia, 2012, 60(9),3849.
7 Attar H, Prashanth K G, Chaubey A K, et al. Materials Letters, 2015, 142,38.
8 Larsen J M, Russ S M, et al.Metallurgical & Materials Transactions A, 1995, 26(12),3211.
9 Lu X H, Yang Y Q, et al. Transactions of Nonferrous Metals Society of China, 2006, 16(1),77.
10 Zhu Y, Yang Y Q, et al. Transactions of Nonferrous Metals Society of China, 2008, 18(3),733.
11 Vancheeswaran R, Elzey D M,et al. Acta Materialia, 1996, 44(6),2175.
12 Feng G H, Yang Y Q, Luo X, et al. Composites Part B: Engineering, 2015, 68, 336.
13 Miracle D B. Composites Science and Technology, 2005, 65(15-16),2526.
14 Christoph Leyens,Frank Kocian,et al. Aerospace Science and Technology, 2003,7(3),201.
15 Fang Q, Sidky P S, Hocking G M. Materials Science & Engineering A, 2000, 288(2),293.
16 Leyens C, Hausmann J, Kumpfert J. Advanced Engineering Materials, 2010, 5(6),399.
17 Sivakumar G, Ananthi V, Ramanathan S. Transactions of Nonferrous Me-tals Society of China, 2017, 27(1),82.
18 Mitun D, Vamsi K B, Kumar T S S, et al. Materials & Design, DOI:10.1016/j.matdes.2016.01.143.
19 Das M, Balla V K, Basu D, et al.Scripta Materialia, 2010, 63(4),438.
20 Kooi B J, Kabel M, et al.Acta Materialia, 1999, 47(10),3105.
21 Das M, Bysakh S, Basu D, et al.Surface and Coatings Technology, 2011, 205(19),4366.
22 Vreeling J A, Ocelík V, Hosson J T M D.Acta Materialia, 2002, 50(19),4913.
23 Weng F, Chen C, Yu H.Materials & Design, 2014, 58,412.
24 Zhou L, Yuan T, Li R, et al. Materials Science & Engineering A, 2018, 725(16),329.
25 Zhou L, Yuan T, Li R, et al. Journal of Alloys & Compounds, 2018, 762,289.
26 刘统军. (TiB+La2O3)增强耐热钛基复合材料的组织和性能研究.硕士学位论文 ,上海交通大学,2015.
27 Duttamajumdar J, Li L. Materials Letters, 2010, 64(9),1010.
28 Madtha S, Lee C, Chandran K S R. Journal of the American Ceramic Society, 2008, 91(4),1319.
29 Li J, Wang L, Qin J, et al. Materials Science & Engineering A, 2011, 528(15),4883.
30 Gu D, Hagedorn Y C, Meiners W, et al. Composites Science & Technology, 2011, 71(13),1612.
31 He Beibei,Chang Kun,Wu Wenheng, et al. Vacuum,2017,143,23.
32 Zhou Shengfeng,Zhao Yu,Wang Xiaojian, et al. Journal of Alloys and Compounds,2020,820,153422.
33 Hu Y, Ning F, Wang H, et al. Optics & Laser Technology, 2018,99,174.
34 Xia Mujian,Liu Aihui,Hou Zhiwei, et al. Journal of Alloys and Compounds,2017,728,436.
35 Eskandar Fereiduni,Ali Ghasemi,Mohamed Elbestawi. Materials & Design,2019,184,108185.
36 Li Hailiang,Yang Zhihua,Cai Delong, et al. Materials & Design,2020,185,108245.
37 Du Z X, Xiao S L, Wang P X, et al. Materials Science and Engineering: A, 2014, 596,71.
38 Tianhao, Wang, et al. Composites Part B Engineering, 2019,172,54.
39 Cai C, Radoslaw C, Zhang J, et al. Powder Technology, 2019, 342,73.
40 Shishkovsky I, Kakovkina N, Sherbakov V. Composite Structures, 2017, 169,90.
41 Chen Y, Zhang J, Dai N, et al. Electrochimica Acta, 2017, 232,89.
42 Cai Chao,He Shan,Li Lifan, et al. Composites Part B,2019,164,546.
43 Kang N, Coddet P, Liu Q, et al. Additive Manufacturing, 2016,11,1.
44 Hu Yingbin,Zhao Bo,Ning Fuda, et al. Materials Letters,2017,195,116.
45 Xianglong G, Liqiang W, Minmin W, et al. Acta Materialia, 2012, 60(6-7),2656.
46 Majchrowicz K, Pakieła Z, Brynk T, et al. Materials Science and Engineering: A, 2019,765,138290.
47 Feng Y, Feng K, Yao C, et al. Materials & Design, 2019, 181,107959.
48 Feng Y, Feng K, Yao C, et al. Materials & Design, 2018, 157,258.
49 Zhang X, Li Y, Song G, et al. Materials & Design, 2011, 32(8-9),4327.
50 Gu D, Shen Y. Journal of Alloys & Compounds, 2009, 473(1-2),107.
51 Hooyar A, Matthias B, et al. Acta Materialia, DOI: 10.1016/j.actamat.2014.05.022.
52 Tao X, Yao Z, Zhang S, et al. Surface & Coatings Technology, 2018, 337,418.
53 Weinmann M, Schnitter C, Stenzel M, et al. International Journal of Refractory Metals & Hard Materials, 2018,75,126.
54 Han Changjun,Li Yan,Wang Qian, et al. Materials & Design,2018,141,256.
55 Kang N,Lin X,Mansori M, et al. Additive Manufacturing,2020,31,100911.
56 Zhang Duyao,Qiu Dong,Gibson Mark A, et al. Nature,2019,576,91.
[1] 杨立军, 郑航, 李俊, 隋泽卉. 热处理对激光选区熔化成型316L合金综合性能的影响[J]. 材料导报, 2021, 35(12): 12103-12109.
[2] 李宸庆, 侯雅青, 苏航, 潘涛, 张浩. 铁/镍元素粉末的选区激光熔化过程扩散动力学研究[J]. 材料导报, 2020, 34(Z1): 370-374.
[3] 宗学文, 刘文杰, 张健, 杨雨蒙, 高中堂. 激光选区熔化与铸造成形TC4钛合金的力学性能分析[J]. 材料导报, 2020, 34(16): 16083-16086.
[4] 邹田春, 欧尧, 祝贺, 秦嘉徐. 激光选区熔化AlSi7Mg合金的微观组织和力学性能[J]. 材料导报, 2020, 34(10): 10098-10102.
[5] 倪嘉, 柴皓, 史昆, 赵军, 刘时兵, 刘鸿羽, 崔亚迪. 颗粒增强钛基复合材料的研究进展[J]. 材料导报, 2019, 33(Z2): 369-373.
[6] 李通, 李金权, 王文广, 倪丁瑞. 影响碳/金属复合材料导热性能的主要因素探讨[J]. 材料导报, 2018, 32(15): 2640-2646.
[7] 曹秀中, 赵冰, 韩秀全, 侯红亮, 曲海涛. 连续SiC纤维增强钛基复合材料横向高温变形机理研究*[J]. 《材料导报》期刊社, 2017, 31(8): 88-93.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed