Please wait a minute...
材料导报  2021, Vol. 35 Issue (Z1): 206-210    
  无机非金属及其复合材料 |
新型胶凝材料体系的抗裂性能
宋少民1, 王宇杰1, 李统彬2
1 北京建筑大学,北京未来城市设计高精尖创新中心,北京 100044
2 佛山市汇江混凝土有限公司,佛山 528200
Anti-cracking Performance of New Cementitious Material System
SONG Shaomin1, WANG Yujie1, LI Tongbin2
1 Beijing Future Urban Design Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
2 Foshan City Huijiang Concrete Co. Ltd, Foshan 528200, China
下载:  全 文 ( PDF ) ( 3642KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 结构开裂问题一直困扰着现代混凝土工程,引起混凝土结构开裂的因素有很多,其中水泥的“三高”问题,即高硅酸三钙、高铝酸三钙、高细度是引起开裂的主要原因。本通过降低胶凝材料中水泥熟料的比例、采用粗磨而成的水泥熟料以及提高胶凝材料中矿物掺和料比例的方法配制出低碳胶凝材料这种新型胶凝材料体系,并将其与现行搅拌站常用胶凝材料体系进行抗裂性能的对比,应用自主研发设计的“方圆抗裂模具”研究两种胶凝材料体系的抗裂性能,同时结合水化热做进一步的分析。研究表明:低碳胶凝材料这种新型胶凝材料体系所体现的抗裂性能和当前搅拌站所采用的胶凝材料体系进行比较具有非常大的优势;此外对于低碳胶凝材料而言,它的水化放热量和水化放热速率低于现行搅拌站常用胶凝材料体系;掺加一定量的钢渣、膨胀剂能够显著提高低碳胶凝材料的抗裂性;SO3含量低会增加低碳胶凝材料的开裂敏感性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋少民
王宇杰
李统彬
关键词:  低碳胶凝材料  方圆抗裂模具  开裂敏感性  水化热  三氧化硫    
Abstract: Structural cracking is a common problem that has always plagued modern concrete engineering. There are many factors affecting concrete cracking and the “three highs” of cement, namely high C3S content, high C3A content and high fineness is the main reason. In this paper, a new type of low-carbon cementitious material system was formulated by reducing the proportion of cement clinker in cementitious materials, using coarsely ground cement clinker and increasing the proportion of mineral admixtures in cementitious materials. Compared with the cementitious material system commonly used in the current mixing plant, apply the self-developed “square and round anti-crack mold” to study the crack resistance of the two cementitious material systems, and combine the heat of hydration for further analysis. The research shows that the crack resistance of the new type of low-carbon cementitious material system is significantly better than that of the current cementitious material system commonly used in the mixing plant. The heat of hydration heat is lower than that of the commonly used cementing material system in the mixing plant. Adding a certain amount of steel slag and expansion agent can significantly improve the crack resistance of low carbon cementitious mate-rials, and low SO3 content will increase the cracking sensitivity of low carbon cementitious materials.
Key words:  low carbon cementitious material    square and round anti-crack mold    cracking sensitivity    hydration heat    sulphur trioxide
                    发布日期:  2021-07-16
ZTFLH:  TU528  
基金资助: 国家自然科学基金(51578039)
通讯作者:  john.song65@163.com   
作者简介:  宋少民,北京建筑大学教授,北京建筑大学材料学科负责人,中国建筑材料联合会科技教育委员会委员,中国砂石协会副会长、专家委员会主任,中国混凝土与水泥制品协会教育与人力资源委员会理事长,全国高等学校建筑材料学科研究会理事长,中国建筑学会建筑材料分会理事等。研究领域涉及高品质混凝土骨料、新型矿物掺和料、绿色高性能混凝土理论与实践。获得国家发明专利11项,发表学术论文100余篇,SCI、EI收录论文20余篇。出版学术著作《绿色高性能混凝土技术与工程应用》《废弃资源与低碳混凝土》《活性粉末混凝土》。主编中国混凝土与水泥制品协会标准《用于混凝土的石灰石粉》和中国砂石协会标准《用高性能于混凝土的骨料》,参与编制国家标准《用于水泥和混凝土的石灰石粉》《活性粉末混凝土》和建工行业建设标准《用高性能于混凝土的骨料》。主持国家自然基金和企业重大新材料研发课题。王宇杰,2012年毕业于长沙理工大学土木工程专业,2013年至2017年服役于中国人民武装警察部队交通部队,2017年至2018年就职于中交一公局第三工程有限公司,现为北京建筑大学土木与交通工程学院硕士研究生,从事土木工程材料方面的研究工作。目前主要研究方向为绿色高性能混凝土。
引用本文:    
宋少民, 王宇杰, 李统彬. 新型胶凝材料体系的抗裂性能[J]. 材料导报, 2021, 35(Z1): 206-210.
SONG Shaomin, WANG Yujie, LI Tongbin. Anti-cracking Performance of New Cementitious Material System. Materials Reports, 2021, 35(Z1): 206-210.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/IZ1/206
1 高育欣, 余保英, 徐芬莲,等. 混凝土, 2012(4), 58.
2 刘娟红, 宋少民.绿色高性能混凝土技术与工程应用, 中国电力出版社, 2010.
3 宋少民, 刘娟红.废弃资源与低碳混凝土, 中国电力出版社, 2016.
4 张彩丽, 于莉, 孙玉周.硅酸盐通报, 2016,35(7), 2149.
5 刘小端. 低碳胶凝材料研究.硕士学位论文, 北京建筑大学, 2019.
6 陈改新, 姜福田.生态环境与混凝土技术国际学术研讨会. 新疆,2005,pp.237.
7 Gerard B, Marchand J. Cement and Concrete Research, 2000, 30,37.
8 Sugiyama T, Bremmer T W, Holm T A. ACI Materials Journal,1994,93,443.
9 郭新强. 水利建设与管理, 2010(3), 68.
10 陈波, 蔡跃波, 丁建彤. 硅酸盐学报,2010(9), 1677.
11 李跃, 霍凯成, 黄俊. 华中科技大学学报(城市科学版), 2007(3), 56.
12 刘冠国, 马虎, 曹鹏飞. 混凝土, 2011(12), 70.
13 杨华全, 周世华, 董维佳等.混凝土, 2007(10), 46.
14 Zhang Zedi,Xiao Jia, Han Kaidong, et al. Construction and Building Materials, 2020, 263, 120656.
15 刘牧天. 石灰石粉在不同硬化体系中的作用差异.硕士学位论文, 重庆交通大学, 2015.
[1] 杨国坤, 蒋国盛, 刘天乐, 覃鑫, 余尹飞. 控温自修复微胶囊的制备及在水合物地层固井水泥浆中的应用[J]. 材料导报, 2021, 35(2): 2032-2038.
[2] 张丰, 白银, 蔡跃波. 5 ℃养护下甲酸钙对水泥早期水化的影响[J]. 材料导报, 2021, 35(10): 10055-10061.
[3] 张长森, 胡志超, 王旭, 诸华军, 杨旭, 顾薛苏. 硅烷偶联剂/偏高岭土基地聚合物水化热及动力学研究[J]. 材料导报, 2020, 34(14): 14105-14109.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed