Please wait a minute...
材料导报  2021, Vol. 35 Issue (Z1): 169-171    
  无机非金属及其复合材料 |
碳含量对无压烧结碳化硅陶瓷的显微组织和力学性能的影响
刘宝友1,2, 岳新艳1,2, 冯东1,2, 茹红强1,2, 刘春明1,2
1 东北大学材料各向异性与织构教育部重点实验室,沈阳 110819
2 东北大学材料科学与工程学院陶瓷与粉末冶金研究所,沈阳 110819
Effect of Carbon Content on Microstructure and Properties of Pressureless-sintered Silicon Carbide
LIU Baoyou1,2, YUE Xinyan1,2, FENG Dong1,2, RU Hongqiang1,2, LIU Chunming1,2
1 Key Laboratory for Anisotropy and Texture of Materials of Ministry of Education, Northeastern University, Shenyang 110819, China
2 Institute of Ceramics and Powder Metallurgy, School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
下载:  全 文 ( PDF ) ( 3120KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在碳化硼添加量为1wt%的条件下,考察不同碳含量对2 000 ℃下制备的无压固相烧结碳化硅陶瓷的显微组织和力学性能的影响。实验结果表明:物相分析显示不同C含量的SiC陶瓷样品的XRD衍射图谱近似相同,其中主相均为SiC,检测到少量C,未检测到B4C相。当C含量为3wt%时,SiC陶瓷样品的力学性能达到最佳,其相对密度、抗折强度、断裂韧性与维氏硬度分别为98.6%、452 MPa、4.5 MPa·m1/2和 30 GPa。继续增加碳含量,SiC晶粒存在局部异常长大现象,相应样品的力学性能也有所下降。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘宝友
岳新艳
冯东
茹红强
刘春明
关键词:  碳含量  无压烧结碳化硅  显微组织  力学性能    
Abstract: In the present study, using samples with 1wt% B4C addition prepared by pressureless sintering at 2 000 ℃, the effect of carbon content on the microstructure and mechanical properties of solid-state sintered silicon carbide ceramics was investigated. The experimental results were as follows: XRD patterns of all samples with different carbon content were almost same with each other. SiC as main phase and a trace amount of C were identified, B4C phase was not detected. When carbon content was 3wt%, the sample showed the optimum mechanical properties of which the volume density, relative density, bending strength, fracture toughness and Vickers hardness were 98.6%, 452 MPa, 4.5 MPa·m1/2, 30 GPa, respectively. With increasing carbon content, the grain size of silicon carbide gradually increased and some abnormal grain growth occurred which could decrease the mechanical properties of this material.
Key words:  carbon content    pressureless-sintered SiC    microstructure    mechanical property
                    发布日期:  2021-07-16
ZTFLH:  TB333  
基金资助: 国家重点研发项目(2017YFB0310300)
通讯作者:  ruhq@smm.neu.edu.cn   
作者简介:  刘宝友,东北大学硕士,主要研究碳化硅超细粉体的提纯及碳化硅的无压烧结。茹红强,东北大学教授,博士研究生导师。主要研究方向为先进陶瓷材料、新型摩擦材料、陶瓷/金属复合材料、防弹新材料、粉末冶金新材料。近年来主持和完成包括国家“863”高技术项目和国家自然科学基金项目在内的各类科研项目30余项。在长期的科研工作中先后完成了 “高技术碳化硅陶瓷的无压烧结技术”、“高技术碳化硼陶瓷的无压烧结技术”、“高性能三维网络SiC陶瓷材料的制备技术”、“二硼化钛无压烧结技术”和“陶瓷/铝合金复合材料制备技术”等成果。发表论文230余篇,主编出版专著二部。获得省部级科研奖励6次。申请国家发明专利20项,获批15项。
引用本文:    
刘宝友, 岳新艳, 冯东, 茹红强, 刘春明. 碳含量对无压烧结碳化硅陶瓷的显微组织和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 169-171.
LIU Baoyou, YUE Xinyan, FENG Dong, RU Hongqiang, LIU Chunming. Effect of Carbon Content on Microstructure and Properties of Pressureless-sintered Silicon Carbide. Materials Reports, 2021, 35(Z1): 169-171.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/IZ1/169
1 Nekahi S, Vaferi K, Vajdi M, et al. Ceramics International, 2019, 45(18),24060.
2 Shahedi A M, Golmohammadi F, Ghassemi K M, et al. Ceramics International, 2016, 42(3),4498.
3 Meng B, Liu A, et al. Ceramics International, 2019, 45(16), 19771.
4 Nadeau J S. American Ceramic Society Bulletin. 1973, 52 (2), 170.
5 Lara A, Ortiz A L, Munoz A, et al. Ceramics International, 2012, 38(1), 45.
6 Wu Haibo, Yan Yongjie, Liu Guilin. International Journal of Applied Ceramic Technology, 2015, 12(5), 976.
7 Sakai T, Watanabe H, Aikawa T. Journal of Materials Science Letters, 1987, 6 (7), 865.
8 Perevislov S N, Lysenkov A S, Titov D D, et al. Inorganic Materials, 2017, 53(2), 220.
9 Bind J M, Biggers J V. Journal of American Ceramic Society, 1975, 58 (7-8), 304.
10 武安华, 曹文斌, 等. 材料工程. 2001(4), 3.
11 Datta M S, Bandyopadhyay A K, Chaudhuri B. Bulletin of Materials Science, 2002, 25(3), 181.
12 李见.材料科学基础, 冶金工业出版社, 2000, pp.215.
13 Green D J, 龚江宏. 陶瓷材料力学性能导论, 清华大学出版社, 2003, pp. 80.
[1] 曾纪军, 高占远, 阮冬. 氧化石墨烯水泥基复合材料的性能及研究进展[J]. 材料导报, 2021, 35(Z1): 198-205.
[2] 孙茹茹, 王振, 黄法礼, 易忠来, 袁政成, 谢永江, 李化建. 不同岩性石粉-水泥复合胶凝材料性能研究[J]. 材料导报, 2021, 35(Z1): 211-215.
[3] 周祥, 赵华堂, 李亮, 杜浪, 周双福, 邵瞾, 张晓敏. Si-Mn矿粉粒度对复合胶凝体系水化机理和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 279-283.
[4] 徐连勇, 高雅琳, 赵雷, 韩永典, 荆洪阳. Hastelloy X激光熔覆工艺及组织性能[J]. 材料导报, 2021, 35(Z1): 357-361.
[5] 薛河, 刘吉, 张顺, 张建龙, 孙裕满, 毕跃起. 基于UMAT焊接接头力学性能连续变化的表征方法及应用[J]. 材料导报, 2021, 35(Z1): 362-366.
[6] 姚刚, 刘衍腾, 邓云华, 续润洲, 赵伟. 钛合金蜂窝壁板楔形件静强度测试及失效模式分析[J]. 材料导报, 2021, 35(Z1): 367-370.
[7] 刘甲, 陈高澎, 马照伟, 雷小伟, 贾晓飞, 崔永杰. 钛合金混合保护气等离子弧焊接头组织及性能[J]. 材料导报, 2021, 35(Z1): 371-373.
[8] 曾小川, 李学军, 邓小云, 胡侨丹, 尤磊. SA508 Gr.4N钢的辐照脆化性能研究进展[J]. 材料导报, 2021, 35(Z1): 438-442.
[9] 田飞, 蔺宏涛, 江海涛. 高强度钢QP980激光焊接头的微观组织与力学性能[J]. 材料导报, 2021, 35(Z1): 447-453.
[10] 李伟培, 何世杰, 邱志明, 吴松平, 严玉蓉. 载体孔属性对多孔复合PCMs热性能的影响:综述[J]. 材料导报, 2021, 35(Z1): 495-500.
[11] 杨达, 卢明阳, 宋迪, 白书霞, 张国华, 胡秀颖, 庞来学. 地质聚合物水泥的研究进展[J]. 材料导报, 2021, 35(Z1): 644-649.
[12] 李道秀, 韩梦霞, 张将, 彭银江, 孙谦谦, 刘桂亮, 刘相法. 细晶Al-Si-Mg合金的组织遗传性与高屈服强度设计[J]. 材料导报, 2021, 35(9): 9003-9008.
[13] 聂金凤, 范勇, 赵磊, 刘相法, 赵永好. 颗粒增强铝基复合材料强韧化机制的研究新进展[J]. 材料导报, 2021, 35(9): 9009-9015.
[14] 钟诗宇, 张丁非, 胥钧耀, 赵阳, 冯靖凯, 蒋斌, 潘复生, 杨静波. 含Gd的Mg-Al系合金研究现状[J]. 材料导报, 2021, 35(9): 9016-9027.
[15] 刘新, 冯攀, 沈叙言, 王浩川, 赵立晓, 穆松, 冉千平, 缪昌文. 水泥水化产物——水化硅酸钙(C-S-H)的研究进展[J]. 材料导报, 2021, 35(9): 9157-9167.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed