Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z2): 173-176    
  无机非金属及其复合材料 |
电子束诱导定向凝固对硅中Fe杂质分凝的影响
蒋健博1,2, 黄以平3, 李少林3, 刘海浪3, 彭治国3, 谭毅4
1 海洋装备用金属材料及其应用国家重点实验室,鞍山 114000
2 鞍钢集团北京研究院,北京 102209
3 桂林电子科技大学机电工程学院, 桂林 541004
4 大连理工大学材料科学与工程学院,大连116024
Influence of Directional Solidification Induced by Electron Beam on Segregation of Fe in Silicon
JIANG Jianbo1,2, HUANG Yiping3, LI Shaolin3, LIU Hailang3, PENG Zhiguo3, TAN Yi4
1 State Key Laboratory of Metal Materials for Marine Equipment and Applications, Anshan 114000, China
2 Ansteel Beijing Research Institute, Beijing 102209, China
3 Institute of Electrical and Mechanical Engineering, Guilin University of Electronic Technology, Guilin 541004, China
4 School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
下载:  全 文 ( PDF ) ( 4090KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 定向凝固是去除硅中金属杂质的主要技术,利用杂质在硅中的分凝效应将其富集到最后凝固区域,杂质分凝效果取决于其在固液界面前沿传输的驱动力。然而,在传统的定向凝固技术中,由热梯度提供的驱动力有限,只能通过降低凝固速率或增加凝固次数实现杂质的深度去除。本研究利用电子束降束诱导的方式实现了硅的定向凝固,并考察了Fe杂质的提纯效果及影响机制。结果表明,在电子束诱导凝固条件下,Fe含量被降低到0.2×10-6(质量分数,下同)以下,其扩散层厚度为4.13×10-4 m,比传统定向凝固的扩散层厚度小一个数量级,可以在较大的凝固速率下获得较好的提纯效果。电子束作用形成的大温度梯度强化了熔体对流,并且电子的定向迁移与杂质元素具有交互作用,增加了界面前沿杂质传输的驱动力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
蒋健博
黄以平
李少林
刘海浪
彭治国
谭毅
关键词:  电子束  定向凝固  多晶硅  Fe杂质  分凝    
Abstract: Directional solidification is a main technology to remove metal impurities in silicon. These impurities can be enriched to the final solidification region by segregation effect. The effect of segregation depends on the driving force of impurities transport at the front of solid-liquid interface. However, during traditional directional solidification technology, the driving force provided by thermal gradient is limited, so that the deep removal of impurities can only be achieved by reducing the solidification rate or increasing the solidification times. In this study, the directional solidification of silicon is achieved by the induction of electron beam, the purification effect of Fe and its influence mechanism are investigated. The results show that Fe content is reduced to less than 0.2×10-6 by the induction of electron beam. The diffusion layer thickness of Fe is 4.13×10-4 m, which is one order of magnitude smaller than that during traditional directional solidification. The large temperature gradient formed by electron beam enhances the convection of melt, and the directional migration of electrons interacts with impurity elements, which increase the driving force of impurity transport at the front of solid-liquid interface.
Key words:  electron beam    directional solidification    silicon    Fe impurities    segregation
               出版日期:  2020-11-25      发布日期:  2021-01-08
ZTFLH:  TF134  
基金资助: 海洋设备与应用金属材料国家重点实验室基础项目(SKLMEA-K201801)
通讯作者:  lnsolar@dlut.edu.cn   
作者简介:  蒋健博,2011年毕业于大连理工大学材料加工专业。目前在鞍钢集团北京研究院和海洋装备用金属材料及其应用国家重点实验室从事焊接技术和复合板开发工作。谭毅,大连理工大学,教授。毕业于东京工业大学,主要研究方向为高温合金、钛合金、多晶硅、储能材料及相关装备的研发。发表论文230余篇,申报国际、国家及与企业合作发明专利220余项,获省部级科技奖励3项,承担国家科技支撑计划项目等20余项。
引用本文:    
蒋健博, 黄以平, 李少林, 刘海浪, 彭治国, 谭毅. 电子束诱导定向凝固对硅中Fe杂质分凝的影响[J]. 材料导报, 2020, 34(Z2): 173-176.
JIANG Jianbo, HUANG Yiping, LI Shaolin, LIU Hailang, PENG Zhiguo, TAN Yi. Influence of Directional Solidification Induced by Electron Beam on Segregation of Fe in Silicon. Materials Reports, 2020, 34(Z2): 173-176.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ2/173
1 Kvande R, Mjos O, Ryningen B.Materials Science and Engineering A, 2005, 413, 545.
2 Martorano M A, Neto J B F, Oliveira T S, et al.Materials Science and Engineering B, 2011, 176, 217.
3 魏奎先, 郑达敏, 马文会, 等.真空科学与技术学报, 2014, 34(12),1358.
4 Shi S, Tan Y, Jiang D C, et al.Separation and Purification Technology, 2015, 152, 32.
5 Tan Y, Shi S, Guo X L, et al.Vacuum, 2013, 89, 12.
6 Tan Y, Wen S T, Shi S, et al.Vacuum, 2013, 95, 18.
7 Hofstertter J, Lelievre J F, del Canizo C, et al.Materials Science and Engineering B, 2009, 159-160, 299.
8 刘秋娣,林安中,林喜斌.稀有金属,2002, 26 (6), 416.
9 Brown R A, Kim D H.Journal of Crystal Growth, 1991, 109, 50.
10 Burton J A, Prim R C, Slichter W P.Journal of Chemical Physics, 1953, 21, 1987.
11 Yuge N,Sakaguchi Y,Terashima H, et al.Journal of the Japan Institute of Metals, 1997, 61(10), 1094.
12 Wen S T, Tan Y, Yuan T, et al.Vacuum, 2017, 145, 251.
13 Kvande R, Geerligs L J, Coletti G, et al.Journal of Applied Physics, 2008, 104(6), 064905.
14 Qiu S, Wen S T, Fang M, et al.Vacuum, 2016, 125, 40.
15 Gan C H, Fang M, Zhang L, et al.Transactions of Nonferrous Metals So-ciety of China, 2016, 26(3), 859.
16 傅恒志.先进材料定向凝固, 科学出版社, 2008.
17 Safarian J, Tangstad M.High Temperature Materials and Processes, 2012, 31(1), 73.
18 Safarian J, Tangstad M.Metallurgical and Materials Transactions B, 2012, 43(6), 1427.
19 温书涛. 电子束熔炼提纯多晶硅中热量传输和能量利用的研究.博士学位论文, 大连理工大学, 2013.
[1] 陈辉, 严大洲, 万烨, 孙强, 张邦洁. 区熔用多晶硅棒制备技术浅析[J]. 材料导报, 2020, 34(Z2): 152-156.
[2] 李鑫, 谢辉, 杨宾, 李双明. Mg2(Si,Sn)基热电材料研究进展[J]. 材料导报, 2020, 34(Z1): 43-47.
[3] 许壮, 高召顺, 韩立, 左婷婷, 伍岳, 肖立业, 孔祥东. 电子束热处理快速制备石墨烯技术[J]. 材料导报, 2020, 34(6): 6006-6009.
[4] 赵桐, 唐振云, 刘巧沐, 黄烁, 张文云, 张北江. GH4065A合金电子束焊接工艺及接头组织性能[J]. 材料导报, 2020, 34(22): 22105-22110.
[5] 刘浩东, 喻辉, 戴京涛, 崔爱永, 魏华凯, 赵培仲, 卢长亮. 非真空激光定向凝固参数对DZ22合金熔覆层组织的影响[J]. 材料导报, 2020, 34(20): 20091-20095.
[6] 李鑫, 谢辉, 魏鑫, 张亚龙. Mg2Si1-xSnx合金热电性能的第一性原理计算预测[J]. 材料导报, 2020, 34(18): 18098-18103.
[7] 马文彬, 郭京京, 骆红云, 唐君, 杨晓光. 低塑性加工对定向凝固镍基合金DZ125高温氧化性能的影响[J]. 材料导报, 2020, 34(10): 10093-10097.
[8] 杨金祥, 石爽, 姜大川, 李旭, 李鹏廷, 谭毅, 姚玉杰, 池明, 张润德, 张建帅. 多晶硅定向凝固过程中温度对凝固速率的影响[J]. 材料导报, 2019, 33(z1): 28-32.
[9] 卢百平, 崔春娟, 田露露, 问亚岗, 王佩. 布里奇曼定向凝固Ni-12%Si过共晶的弹性模量与断裂韧性[J]. 材料导报, 2019, 33(8): 1383-1388.
[10] 董小花, 程亮, 陈春彩, 朱贤方. 均匀电子束辐照诱导多壁碳纳米管非晶化[J]. 材料导报, 2019, 33(24): 4031-4034.
[11] 王晓娟, 刘林, 赵新宝, 黄太文, 杨文超, 张军, 傅恒志. 添加碳和硼改善第三代镍基定向凝固高温合金的显微组织和偏析行为[J]. 材料导报, 2019, 33(20): 3452-3459.
[12] 朱靖, 李勇, 王莹, 李焕, 赵亚茹. 不同定向凝固速率下Cu-2.5%Cr合金中带状组织的形成机理[J]. 材料导报, 2019, 33(2): 309-313.
[13] 魏岑,李向明. 一种不稳定的共晶生长方式:倾斜共晶生长的研究进展[J]. 材料导报, 2019, 33(15): 2532-2537.
[14] 陈守东. MCrAlY粘结层的微观组织及制备方法研究进展[J]. 材料导报, 2019, 33(15): 2582-2588.
[15] 韩志勇, 史文新, 王者, 丁坤英, 程涛涛. HCPEB表面改性对镀铝CoCrAlY涂层显微组织及氧化性能的影响[J]. 材料导报, 2019, 33(14): 2392-2396.
[1] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] GUO Hongjian, JIA Junhong, ZHANG Zhenyu, LIANG Bunu, CHEN Wenyuan, LI Bo, WANG Jianyi. Microstructure and Tribological Properties of VN/Ag Films Fabricated by Pulsed Laser Deposition Technique[J]. Materials Reports, 2017, 31(2): 55 -59 .
[4] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[5] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[6] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[7] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[8] YAN Zhilong, LI Yongsheng, HU Kai, ZHOU Xiaorong. Progress of Study on Phase Decomposition of Duplex Stainless Steel[J]. Materials Reports, 2017, 31(15): 75 -80 .
[9] SHI Yu, ZHOU Xianglong, ZHU Ming, GU Yufen, FAN Ding. Effect of Filler Wires on Brazing Interface Microstructure and Mechanical Properties of Al/Cu Dissimilar Metals Welding-Brazing Joint[J]. Materials Reports, 2017, 31(10): 61 .
[10] DONG Fei,YI Youping,HUANG Shiquan,ZHANG Yuxun,. TTT Curves and Quench Sensitivity of 2A14 Aluminum Alloy[J]. Materials Reports, 2017, 31(10): 77 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed