Please wait a minute...
材料导报  2020, Vol. 34 Issue (22): 22105-22110    https://doi.org/10.11896/cldb.19080030
  金属与金属基复合材料 |
GH4065A合金电子束焊接工艺及接头组织性能
赵桐1, 唐振云1, 刘巧沐2, 黄烁3, 张文云3, 张北江3
1 中国航空制造技术研究院高能束流加工技术重点实验室,北京 100024
2 中国航发四川燃气涡轮研究院,成都 610500
3 钢铁研究总院高温材料研究所,北京 100081
Electron Beam Welding Process and Microstructure and Properties of Joint of GH4065A Alloy
ZHAO Tong1, TANG Zhenyun1, LIU Qiaomu2, HUANG Shuo3, ZHANG Wenyun3, ZHANG Beijiang3
1 Science and Technology on Power Beam Processes Laboratory, AVIC Manufacturing Technology Institute, Beijing 100024, China
2 AECC Gas Turbine Establishment, Chengdu 610500, China
3 High Temperature Material Research Institute, Central Iron and Steel Research Institute, Beijing 100081, China
下载:  全 文 ( PDF ) ( 5721KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 本工作研究了不同电子束焊接工艺条件下GH4065A合金的焊缝质量,探讨了焊接裂纹产生的原因,分析了双斑电子束焊接工艺抑制裂纹的机理,并针对焊接接头的显微组织以及力学性能进行了测试分析。研究发现,采用常规电子束焊接方法时GH4065A合金易开裂,而采用双斑电子束焊接工艺可有效实现GH4065A合金的连接,且焊缝质量满足HB7608-1998标准中I级要求。电子束焊接接头的焊缝区以细小的树枝晶为主,且存在Nb、Ti元素的偏析,γ′强化相从焊缝向近缝母材逐渐粗化,焊缝区与母材的组织差异是导致焊缝高温下拉伸塑性降低的主要原因。模拟结果表明,双斑电子束焊接工艺能够降低焊接过程中的能量集中程度,改善焊缝的冷却速度,从而减轻裂纹产生的倾向。经时效处理后电子束焊缝25~750 ℃的强度系数超过96%,750 ℃下焊接接头延伸率为9%,表明电子束焊接是实现GH4065A合金结构连接的一种有效方法。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵桐
唐振云
刘巧沐
黄烁
张文云
张北江
关键词:  GH4065A合金  电子束焊接  焊缝  力学性能    
Abstract: In this paper, the weld quality of GH4065A alloy under different electron beam welding (EBW) conditions was studied. The causes of welding cracks and the mechanism of crack suppression by double-spot EBW were discussed. The microstructure and mechanical properties of the welded joint were tested and analyzed. It was found that the double-spot EBW can effectively connect GH4065A alloy, and the weld quality can meet the requirements of grade I in HB7608-1998. However, the conventional EBW was easy to crack. The results showed that the weld zone (WZ) of the EBW joint was dominated by dendrites, and there was segregation of Nb and Ti elements. The γ′ strengthening phase gradually coarsened from the weld to the matrix. The difference of microstructure between the WZ and the matrix was the main reason for the reduction of tensile plasticity at high temperature. The simulation results showed that the double-spot EBW can reduce the energy concentration in the welding process, improve the cooling speed of the weld, and reduce the tendency of cracking. After aging treatment, the strength coefficient of welded joint at 25—750 ℃ was over 96%, and the elongation of welded joint at 750 ℃ was 9%, indicating that EBW was an effective joining method of GH4065A alloy structure.
Key words:  GH4065A alloy    electron beam welding    weld    mechanical properties
               出版日期:  2020-11-25      发布日期:  2020-12-02
ZTFLH:  TG456.3  
基金资助: 装备发展部预研项目重点实验室基金(61429080102)
通讯作者:  tongzhao111@126.com   
作者简介:  赵桐,2014年6月毕业于北京化工大学,获得硕士学位。2014年8月至今,就职于中国航空制造技术研究院高能束流加工技术重点实验室,主要从事电子束加工技术方面的研究。
引用本文:    
赵桐, 唐振云, 刘巧沐, 黄烁, 张文云, 张北江. GH4065A合金电子束焊接工艺及接头组织性能[J]. 材料导报, 2020, 34(22): 22105-22110.
ZHAO Tong, TANG Zhenyun, LIU Qiaomu, HUANG Shuo, ZHANG Wenyun, ZHANG Beijiang. Electron Beam Welding Process and Microstructure and Properties of Joint of GH4065A Alloy. Materials Reports, 2020, 34(22): 22105-22110.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19080030  或          http://www.mater-rep.com/CN/Y2020/V34/I22/22105
1 Pollock T M, Tin S. Journal of Propulsion and Power, 2006, 22(2),361.2 Martin R, Evans D. JOM, 2000, 52(3),24.3 Sims C T, Stoloff N S, Hagel W C. Superalloys II—high temperature materials for aerospace and industrial power, John wiley & Sons, New York, 1987.4 Donachie M J, Donachie S J. Superalloys: a technical guide. 2nd Edition. ASM International, Ohio, 2002.5 Shi C X, Zhong Z Y. Acta Metallurgica Sinica, 1997, 33(1), 1(in Chinese).师昌绪, 仲增墉.金属学报, 1997, 33(1),1.6 Preliand F R, Furrer D.In: 8th International Symposium on Superalloys 718 and Derivatives. Pittsburgh, TMS, 2014, pp.3.7 Liu Y C, Zhang H J, Guo Q Y, et al. Acta Metallurgica Sinica,2018, 54(11), 1653(in Chinese).刘永长, 张宏军, 郭倩颖,等.金属学报, 2018, 54(11), 1653.8 Xie X S, Dong J X, Fu S H, et al. Acta Metallurgica Sinica, 2010, 46(11),1289(in Chinese).谢锡善, 董建新, 付书红,等.金属学报, 2010, 46(11), 1289.9 Zhang B J, Zhao G P, Zhang W Y, et al. Acta Metallurgica Sinica, 2015, 51(10), 1227(in Chinese).张北江, 赵光普, 张文云,等.金属学报, 2015(10),1227.10 Zhao G P, Huang S, Zhang B J, et al. Journal of Iron and Steel Research International, 2015, 27(2), 37(in Chinese).赵光普,黄烁,张北江,等. 钢铁研究学报, 2015, 27(2), 37.11 Qu S, Li Y, Ni J C, et al. Aeronautical Manufacturing Technology, 2015, 58(20), 53(in Chinese).曲伸, 李英, 倪建成,等. 航空制造技术, 2015, 58(20),53.12 Zhang B G, Wu L, Feng J C. Welding & Joining, 2004(2), 5(in Chinese).张秉刚, 吴林, 冯吉才.焊接, 2004(2), 5.13 Zhang L, Han X F, Wang L. Aeronautical Manufacturing Technology, 2015, 480(11),96.张露, 韩秀峰, 王伦.航空制造技术, 2015, 480(11),96.14 Hanning F, Andersson J. Welding in the World, 2018, 62(1),395.15 Dupont J N, Notis M R, Marder A R, et al. Metallurgical & Materials Transactions A, 1998, 29(11),2785.16 Richards N L, Chaturvedi M C, Liu Y G, et al. International Journal of Materials & Product Technology, 1996, 11(3-4),284.17 Richards N L, Nakkalil R, Chaturvedi M C. Metallurgical and Materials Transactions A (Physical Metallurgy and, Materials Science), 1994, 25(8),1733.18 Andersson J. Weldability of precipitation hardening superalloys: influence of microstructure. Ph.D. Thesis, Chalmers University of Technology, Sweden, 2011.19 Li Y J, Xia C Z, Shi L. Modern Welding Technology, 2010(7), 1(in Chinese).李亚江, 夏春智, 石磊.现代焊接, 2010(7), 1.20 Chinese Mechanical Engineering Society Welding Society. Welding ma-nual, 2nd Edition, China Machine Press, China, 2001(in Chinese).中国机械工程学会焊接学会.焊接手册, 第2版, 机械工业出版社, 2001.21 Xie W J. Effect of heat treatment on structures and properties of K445 superalloy. Master's Thesis, Xi'an University of Technology, China,2007(in Chinese).谢文江.热处理对K445高温合金组织及性能的影响.硕士学位论文,西安理工大学, 2007.22 Zhou B, Guo S Q, Liu W H, et al. Welding & Joining, 2010(7), 38(in Chinese).周标, 郭绍庆, 刘文慧,等.焊接, 2010(7), 38.23 Xie Y J, Wang M C, Wang M S. China Surface Engineering, 2010, 23(5), 1(in Chinese).谢玉江, 王茂才, 王明生.中国表面工程, 2010, 23(5), 1.24 Carter W T, Jones R M F. JOM, 2005, 57(4), 52.25 Long Z D, Zhuang J Y. Acta Metallurgica Sinica, 1999, 35(11), 1211(in Chinese).龙正东, 庄景云.金属学报, 1999, 35(11), 1211.26 Zhang B J, Zhao G P, Xu G H, et al. Acta Metallurgica Sinica, 2005, 41(11), 1207(in Chinese).张北江, 赵光普, 胥国华,等.金属学报, 2005, 41(11), 1207.27 Valitov V A, Mukhtarov S K, Raskulova Y A. Physics of Metals and Me-tallography, 2006, 102(1), 97.28 Franklin J E, Savage W F. Optics Express, 1974, 23(8),10653.
[1] 何金珊, 方平, 王西涛, 武会宾. Fe-Mn-Al-Nb系轻质低温钢的组织和性能[J]. 材料导报, 2021, 35(2): 2074-2077.
[2] 李健, 左婷婷, 薛江丽, 茹亚东, 赵兴科, 高召顺, 韩立, 肖立业. 热压烧结及轧制工艺对CuCr/CNTs复合材料组织与性能的优化[J]. 材料导报, 2021, 35(2): 2078-2085.
[3] 丁亚茹, 陈芙蓉, 杨帆, 贾翠玲. 响应面法分析7075铝合金激光焊接参数对焊接质量的影响规律[J]. 材料导报, 2021, 35(2): 2103-2108.
[4] 韩善果, 杨永强, 罗子艺, 蔡得涛, 郑世达. 线能量对铝/钢双光束激光焊接接头组织及性能的影响[J]. 材料导报, 2021, 35(2): 2109-2114.
[5] 史平安, 邱勇, 万强, 胡文军, 晏顺坪. 60Co γ射线辐照对硅泡沫材料压缩性能的影响[J]. 材料导报, 2021, 35(2): 2151-2156.
[6] 黄勇, 史才军, 欧阳雪, 张超慧, 史金华, 吴泽媚. 混凝土劈裂拉伸测试方法及性能研究进展[J]. 材料导报, 2021, 35(1): 1131-1140.
[7] 张欣雨, 毛小南, 王可, 陈茜. 典型α+β钛合金组织对静态和动态性能的影响[J]. 材料导报, 2021, 35(1): 1162-1167.
[8] 张鹏斐, 乔志军, 张志佳, 于镇洋, 赵潭, 苟金龙. 加入增韧材料提高TiO2复合纳米电极的力学和电化学性能[J]. 材料导报, 2020, 34(Z2): 24-29.
[9] 王效军, 刘太奇. 碳纳米颗粒对碳纳米管复合材料电热-力学性能的影响[J]. 材料导报, 2020, 34(Z2): 63-66.
[10] 常洪雷, 陈繁育, 金祖权, 王广月, 刘健. 再生骨料混凝土在护岸工程应用的可行性[J]. 材料导报, 2020, 34(Z2): 206-211.
[11] 力乙鹏, 李婷. 土壤固化剂的固化机理与研究进展[J]. 材料导报, 2020, 34(Z2): 273-277.
[12] 贺龙朝, 荆磊, 余森, 徐云浩, 于振涛. 医用可降解镁基复合材料的研究现状及趋势[J]. 材料导报, 2020, 34(Z2): 323-326.
[13] 郝文俊, 孙荣禄, 牛伟, 谭金花, 李小龙. 合金元素影响高熵合金涂层组织及力学性能综述[J]. 材料导报, 2020, 34(Z2): 330-333.
[14] 王力, 裴迪, 李新林, 裴志洋. 轧制ATZ331合金的显微组织与力学性能[J]. 材料导报, 2020, 34(Z2): 356-359.
[15] 王鸣, 张旭, 赵阳, 都亮, 程丽丽, 梁萌. 轧制延展率对IF钢箔力学性能的影响[J]. 材料导报, 2020, 34(Z2): 395-398.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed