Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z1): 581-584    
  高分子与聚合物基复合材料 |
直升机复合材料结构基于振动健康监测的研究进展
朱洪艳, 吴宝昌, 林长亮, 王金亮, 王刚
哈尔滨飞机工业集团有限责任公司,哈尔滨 150066
Research Progress on Vibration Based Structural Health Monitoring onHelicopter Composite Material Structures
ZHU Hongyan, WU Baochang, LIN Changliang, WANG Jinliang, WANG Gang
Harbin Aircraft Industry(group) Co., Ltd., of AVIC, Harbin 150066, China
下载:  全 文 ( PDF ) ( 3071KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 直升机纤维增强树脂基复合材料结构对冲击、疲劳应力等引起的内部分层、裂纹缺陷非常敏感,它会使复合材料结构在没有预警的情况下发生灾难性的失效。因此,对能够及时检测出复合材料内部分层损伤、裂纹方法的需求愈益急迫。而结构健康监测能够实现对复合材料结构的实时原位监测,其中基于振动的健康监测技术使用了振动特性(阻尼、模态、固有频率),它可以很容易地连续从直升机结构的振动中提取,是一种非常有应用前景的结构健康监测方法。本文综述了直升机复合材料结构基于振动特性的健康监测技术的研究进展。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱洪艳
吴宝昌
林长亮
王金亮
王刚
关键词:  复合材料  直升机  振动损伤  健康监测    
Abstract: Helicopterfiber reinforced resin composite material structures are quite sensible to the internal delamination and cracks induced by impact and fatigue stress. It can make composite material structure damage catastrophically without any prewarning. Therefore, the requirement for the method that can detect delamination and cracks in the composite material structures in time is more and more imperative. And that structural health monitoring(SHM) can implement monitoring on compo-site material structures in real time and in-situ. Vibration based SHM utilizes vibration properties, such as damping, modal and natural frequency, which can be easily and continuously extract from the vibration of helicopter composite material structures. It is a SHM method which will hold application foreground greatly. The vibration based SHM technologies of helicopter composite material structures are reviewed.
Key words:  composite material    helicopter    vibration    failure    health monitoring
                    发布日期:  2020-07-01
ZTFLH:  TB33  
作者简介:  朱洪艳,哈尔滨飞机工业集团有限责任公司设计员,高级工程师,博士。2010年毕业于哈尔滨工业大学材料科学与工程学院,现在专业为航空结构强度分析。
引用本文:    
朱洪艳, 吴宝昌, 林长亮, 王金亮, 王刚. 直升机复合材料结构基于振动健康监测的研究进展[J]. 材料导报, 2020, 34(Z1): 581-584.
ZHU Hongyan, WU Baochang, LIN Changliang, WANG Jinliang, WANG Gang. Research Progress on Vibration Based Structural Health Monitoring onHelicopter Composite Material Structures. Materials Reports, 2020, 34(Z1): 581-584.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ1/581
1 Zhang Z F, Ihesiulor O K, Shankar K, et al. Comparison of inverse algorithms for delamination detection in composite laminates.http://procee-dings. asmedigital collection.asme.org/ on 08/11/2013 Terms of Use: http://asme.org/terms.
2 Edmonds J, Hickman G A. Aerospace Conference,2000,6,263.
3 Doebling S W, Farrar C R, Prime M B. The Shock and Vibration Digest,1998,30,91.
4 Palacz M, Krawczuk M. Journal of Sound and Vibration,2002,249(5),999.
5 Green I, Casey C. Journal of Engineering for Gas Turbines and Power,2005,127,425.
6 Lynch J P, Loh K J. The Shock and Vibration Digest,2006,38,91.
7 Kostka P, Holeczek K, Filippatos A, et al. Journal of Intelligent Material Systems and Structures,2012,24(3),299.
8 Shahdin A, Morlier J, Gourinat Y. Journal of Physics: Conference Series,2009,181,012045.
9 Zhang Z, Ihesiulor O K, Shankar K, et al. In: ASME 2012 Conference on Smart Materials. Georgia, USA,2012.
10 Salawu O S. Engineering Structures,1997,19(9),718.
11 Chakraborty D. Materials & Design,2005,26,1.
12 Kannappan L. Damage detection in structures using natural frequency measurements. Ph.D. Thesis,University of New South Wales at Austra-lian Defence Force Academy, Australia,2008.
13 Underwood S S, Meyer J J, Adams D E. Journal of Vibration and Acoustics,2015,137,031015-1.
14 Yoder N C, Adams D E. Materials Forum,2009,33,201.
15 Zwink B R. Journal of Vibration and Acoustics-Transactions of the ASME,2012,134(4),041013.
16 Santos F L M, Peeters B, Auweraer H V, et al.In:54th AIAA/ASME/ASCE/AHS/ASC Structures. Massachusetts, America, 2013.
17 Purekar A, Kothari K, Choi Y T. In: American Helicopter Society 65th Annual Forum. Grapevine, Texas, 2009.
[1] 杨松, 盛双华, 刘应开. 基于Au修饰的花状V2O5的表面增强拉曼散射研究[J]. 材料导报, 2020, 34(Z1): 34-38.
[2] 刘竹, 杨守禄, 姬宁, 罗扬, 许杰, 吴义强. 油茶果壳高值化利用研究进展[J]. 材料导报, 2020, 34(Z1): 120-127.
[3] 王启扬, 杨波. 碳酸盐基常固态复合相变材料的制备与性能研究[J]. 材料导报, 2020, 34(Z1): 137-139.
[4] 孙阔. 碳纤维复合材料滑动舱门刚度试验与仿真分析[J]. 材料导报, 2020, 34(Z1): 161-163.
[5] 于海洋, 李地红, 代函函, 高群. 混杂纤维增强应变硬化水泥基复合材料的弯曲性能研究[J]. 材料导报, 2020, 34(Z1): 229-233.
[6] 周长壮, 马琳, 崔庆贺, 梁金第. 颗粒增强铝基复合材料TLP连接综述与展望[J]. 材料导报, 2020, 34(Z1): 351-355.
[7] 张洋, 张海燕, 陈蕴博, 王大鹏, 陈林, 刘晓萍. 热处理对热压制备Al-Cu-Mg/SiCp制动耐磨复合材料组织及磨损性能的影响[J]. 材料导报, 2020, 34(Z1): 356-360.
[8] 李亚林, 孙垒, 曹柳絮, 焦孟旺, 罗伟, 邱振宇, 王畅. 汽车制动盘用铝基复合材料摩擦磨损研究进展[J]. 材料导报, 2020, 34(Z1): 361-365.
[9] 冉小杰, 周露, 黄福祥, 曾利娟. Cu/Al界面研究进展[J]. 材料导报, 2020, 34(Z1): 366-369.
[10] 秦笑, 王娟, 林高用, 郑开宏, 王海艳, 冯晓伟. 镀铜石墨/铜复合材料的组织和摩擦磨损性能[J]. 材料导报, 2020, 34(Z1): 380-384.
[11] 曹飞, 陈杰, 林泽力. 基于小波能量谱和信息熵的复合材料结构损伤诊断[J]. 材料导报, 2020, 34(Z1): 476-479.
[12] 郝新超. 基于Anderson-Darling检验的复合材料厚板层间拉伸强度性能研究及B基准值[J]. 材料导报, 2020, 34(Z1): 480-485.
[13] 陈姝敏, 吴迪, 何文浩, 陈勇. 银纳米粒子负载的石墨烯基环氧树脂复合材料的制备及性能[J]. 材料导报, 2020, 34(Z1): 503-506.
[14] 方敏, 王璐, 侯佳欣, 南晓茹, 赵彬. 丝素蛋白复合石墨烯类材料在生物医学领域中的研究进展[J]. 材料导报, 2020, 34(Z1): 511-515.
[15] 孙元平, 姚毅恒, 张淑娴, 马建新, 翁赟. 竹缠绕复合材料的线膨胀系数测试[J]. 材料导报, 2020, 34(Z1): 539-541.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed