Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z1): 420-426    
  金属与金属基复合材料 |
耐低温冲击高强高韧合金的组织与性能
高杨, 牛永吉, 田建军, 张志伟, 安宁
北京北冶功能材料有限公司,北京 100192
Microstructure and Property of High Strength and Toughness Alloywith Low-temperature Impact Resistance
GAO Yang, NIU Yongji, TIAN Jianjun, ZHANG Zhiwei, AN Ning
Beijing Beiye Functional Materials Corporation, Beijing 100192,China
下载:  全 文 ( PDF ) ( 21697KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高强高韧合金铸钢具有优良的力学和物理化学性能,使得其具有巨大的发展潜力和经济效益。通过合理的成分设计及热处理工艺,获得制备工艺简单、强韧性高、成本低、污染小,且具有良好低温韧性、焊接性的低合金已成为一项技术问题。本工作针对奥氏体-马氏体高耐蚀高强度合金,通过成分与热处理的良好匹配,使合金达到优良的强塑性。对合金组织和性能进行分析,得出影响合金力学性能的主要因素,为大批量制备该合金打下坚实的基础。通过试验结果可知:相同回火温度下,随着碳含量的增加,合金的室温拉伸强度升高,塑性下降;相同碳含量下,回火温度从480 ℃升高到540 ℃,室温拉伸强度先升高后降低,在520 ℃下达到峰值1 552 MPa,冲击韧性先升高后降低,在500 ℃时达到最大值54 J·cm-2。合金热处理冷却方式由空冷调整为油冷后,其强度和塑性大幅提高,室温拉伸强度达到1 580 MPa,冲击韧性达到100.6 J·cm-2
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高杨
牛永吉
田建军
张志伟
安宁
关键词:  合金  高强韧  组织和性能    
Abstract: Low-alloy cast steel with high strength low-carbon has great potential for development and economic benefits due to its excellent mechanical and physical chemical properties. Through reasonable composition design and heat treatment,it has become a technical problem to obtain low alloy with simple preparation process, high strength and toughness, low cost, less pollution, good low-temperature toughness and weldability. In this paper, a kind of austenite-martensite high-strength alloy with high corrosion resistance was studied. The alloy can achieve excellent strong plasticity through the good match of composition and heat treatment. Based on the statistical analysis of the microstructure and properties of the alloy, the main factors affecting the mechanical properties of the alloy were found, which laid a solid foundation for the mass production of the alloy. The results show that at the same tempering temperature, with the increase of carbon content, the tensile strength at room temperature increases and the plasticity decreases; with the same carbon content, the tempering temperature increase from 480 ℃ to 540 ℃, the tensile strength increases first and then decreases at room temperature, reaches the peak value of 1 552 MPa at 520 ℃, the impact toughness increases first and then decreases, and reaches the maximum value of 54 J·cm-2 at 500 ℃. After changing the cooling mode of heat treatment from air cooling to oil cooling, the strength and plasticity of the alloy are greatly improved. The tensile strength at room temperature reaches 1 580 MPa, and the impact toughness reaches 100.6 J·cm-2.
Key words:  alloy    high strength and toughness    microstructure and property
                    发布日期:  2020-07-01
ZTFLH:  TB31  
作者简介:  高杨,2014年6月毕业于北京工业大学,获得工学博士学位。于2014年9月至今在北京北冶功能材料有限公司(原首钢冶金研究院)工作,主要从事特殊钢和高温合金领域的研究。
引用本文:    
高杨, 牛永吉, 田建军, 张志伟, 安宁. 耐低温冲击高强高韧合金的组织与性能[J]. 材料导报, 2020, 34(Z1): 420-426.
GAO Yang, NIU Yongji, TIAN Jianjun, ZHANG Zhiwei, AN Ning. Microstructure and Property of High Strength and Toughness Alloywith Low-temperature Impact Resistance. Materials Reports, 2020, 34(Z1): 420-426.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ1/420
1 Zhao Jingwei, Jiang Zhengyi. Applied Mechanics and Materials,2015,716-717,48.
2 李杰,王国梁,夏云进,等.材料导报:研究篇,2014,28(7),104.
3 Najafi H, Rassizadehghani J, Norouzi S. Materials and Design,2011,32(2),656.
4 Najafi H, Rassizadehghani J, Asgari S. Materials Science and Engineering A,2008,486(s1-2),1.
5 Zhao Jingwei, Jeong Hun Lee, Yong Woo Kim, et al. Materials Science and Engineering A,2013,559(3),427.
6 Hall E O. Proceedings of the Physical Society,1951,643(9),747.
7 秦丽雁,宋诗哲,李亚红,等.物理化学学报,2008,24(5),895.
8 甄国辉,王海人,屈钧娥,等.材料保护,2014,47(6),52.
9 王丽萍,董文学,郭二军,等.热加工工艺,2013,42(2),63.
10 李树健.成分对00Cr25Ni7mo3N双相不锈钢组织及性能的影响.硕士学位论文,昆明理工大学,2011.
11 Ren P, Yang Y F, Zhu S L, et al. Corrosion Science,2018,18(9),1573.
12 王勇,张正江,张旭昀,等.中国有色金属学报,2015(7),1858.
13 刘晓,马利飞,李运刚.材料热处理学报,2016,37(1),112.
14 Baik Y, Yong C, Moon B M, et al. Physics of Metals & Metallography,2015,116(11),1135.
15 Bai G, Lu S, Li D, et al. Journal of the Electrochemical Society,2015,162(9),C473.
16 Nishikawa A S, Santofimia M J, Sietsma J, et al. Acta Materialia,2018,142(1),142.
17 景财年,王作成.材料导报,2004,18(11),36.
18 Huang M X, He B B. Journal of Materials Science & Technology,2017,34(3),417.
19 赵漫,柴林江,袁珊珊,等.重庆理工大学学报(自然科学),2018,32(1),135.
20 戎咏华,陈乃录,等.金属学报,2017,53(1),1.
21 钟宁.高强度Q&P钢和Q-P-T钢的研究.博士学位论文,上海交通大学,2009.
22 Lee Y K, Han J. Materials Science and Technology,2015,31(7),843.
23 Lee C Y, Jeong J, Han J, et al. Acta Materialia,2015,84(1),1.
24 Zhu K, Mager C, Huang M. Journal of Materials Science & Technology,2017,33(12),1475.
25 Chen L S, Hu B J, Xu J H, et al. Journal of Wuhan University of Technology-Materials Science Edition,2017,32(5),1179.
26 Hajyakbary F, Sietsma J, Petrov R H, et al. Scripta Materialia,2017,137(8),27.
27 Dai Z B, Ding R, Yang Z G, et al. Acta Materialia,2018,144(1),666.
28 陈连生,曹鸿梓,田亚强,等.材料导报:研究篇,2017,31(3),105.
29 田亚强,张宏军,陈连生,等.材料工程,2016,44(4),32.
30 Liang J, Zhao Z, Tang D, et al. Materials Science and Engineering A,2018,711(10),175.
31 王存宇,常颖,杨洁,等.金属学报,2015,51(8),913.
32 Karam-Abian M, Zarei-Hanzaki A, Abedi H R, et al. Marerials Science and Engeering A,2016,651(10),233.
33 陈连生,李跃,张明山,等.金属学报,2017,53(11),1418.
34 徐祖耀.热处理,2009,24(3),1.
35 黎永钧.材料科学与工程,1987(1),39.
36 Long S, Liang Y, Jiang Y, et al. Materials Science & Engineering A,2016,676,38.
[1] 李毅, 赵永庆, 曾卫东. 航空钛合金的应用及发展趋势[J]. 材料导报, 2020, 34(Z1): 280-282.
[2] 任军帅, 李欣琳, 肖松涛, 周立鹏, 舒滢, 张英明. 新型Ti-Al-Zr-Nb-Mo-Si钛合金热变形行为及基于BP神经网络模型的本构关系研究[J]. 材料导报, 2020, 34(Z1): 283-288.
[3] 朱雪峰, 周瑜, 樊凯, 王柯. TC18钛合金固溶过程中黑斑组织的形成机理[J]. 材料导报, 2020, 34(Z1): 289-292.
[4] 郝芳, 辛社伟, 毛友川, 楼美琪, 周伟, 杜予晅, 王凯旋, 屈磊, 冯勇. 钛合金在装甲领域的应用综述[J]. 材料导报, 2020, 34(Z1): 293-296.
[5] 李锐, 曾令碧, 刘腾, 王晓杰, 杨平安. 不同温度下纯Ni/NiTi合金的摩擦特性研究[J]. 材料导报, 2020, 34(Z1): 297-303.
[6] 甘杰, 何林, 李强, 杨晓峰, 范辉. 93W-5Ni-2Fe高密度钨合金冲击韧性关键影响因素研究[J]. 材料导报, 2020, 34(Z1): 304-306.
[7] 江雯, 蒋璐瑶, 黄伟九, 郭非, 董海澎. 退火处理对搅拌摩擦加工LZ91双相镁锂合金微观组织及力学性能的影响[J]. 材料导报, 2020, 34(Z1): 307-311.
[8] 王诗蒙, 杨文朋, 崔红保, 郭学锋, 孙尧. Mg-Zn系合金沉淀硬化研究进展[J]. 材料导报, 2020, 34(Z1): 312-315.
[9] 宋文杰, 刘洁, 董会萍, 张光, 王彤. 超轻镁锂合金熔炼工艺研究[J]. 材料导报, 2020, 34(Z1): 316-321.
[10] 黄同瑊, 秦宇, 晁代义, 王志雄, 宋晓霖, 张华, 程仁策. 大尺寸Al-Cu-Mg-Mn合金铸锭均匀化工艺研究[J]. 材料导报, 2020, 34(Z1): 325-327.
[11] 赵光伟, 陈健, 丁翀, 方东, 叶永盛, 叶喜葱. 冷速与凝固路径对Al-Cu-Si合金相变储热性能的影响[J]. 材料导报, 2020, 34(Z1): 328-333.
[12] 晁代义, 李昌龙, 赵佳蕾, 孙有政, 赵志国, 霍艳, 吕正风. 大尺寸Al-Zn-Mg-Cu铝合金铸锭均匀化工艺研究[J]. 材料导报, 2020, 34(Z1): 338-340.
[13] 谢兴飞, 曲敬龙, 杜金辉. GH4720Li镍基合金混晶组织对高温持久性能的影响[J]. 材料导报, 2020, 34(Z1): 375-379.
[14] 王鹏, 张卫刚, 孙旭东. 锆在硫酸提浓工艺中的腐蚀研究[J]. 材料导报, 2020, 34(Z1): 385-389.
[15] 唐伍实秋, 王斌, 江明晏, 周椤, 叶洋呈. 锆合金表面氟化物-磷酸盐预镀层的制备及对化学镀层性能的影响[J]. 材料导报, 2020, 34(Z1): 390-394.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed