Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z1): 220-223    
  无机非金属及其复合材料 |
再生建筑骨料添加对城墙土体抗渗性的影响
李太行, 戚承志, 王晓娇, 周理安
北京建筑大学,北京交通基础设施建设国际合作基地,北京未来城市设计高精尖中心,北京 100044
Study on the Influence of Recycled Building Aggregate on the Impermeability ofCity Wall Soil
LI Taihang, QI Chengzhi, WANG Xiaojiao, ZHOU Li'an
Beijing International Cooperation Base for Municipal Transportation Infrastructures and Beijing Future Urban Design High-Tech Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
下载:  全 文 ( PDF ) ( 4548KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 城墙作为中国建筑遗产重要的组成部分,具有珍贵的历史价值、文化价值以及艺术价值。作为军事防线的一部分,墙体和其他辅助军事设施构成古代军事防御设施。国内提倡对建筑遗产进行预防性保护,为此需要了解城墙在自然环境条件下出现的破坏形式以及破坏过程。目前,针对降雨条件下城墙的预防性措施并未完善。本实验针对城墙的抗渗性进行研究,探讨原状土加入再生建筑砖骨料和水泥骨料10%、20%、30%、40%掺入量对城墙土体抗渗性的影响。通过正交试验设计,结合三角等焓图得到改性土抗渗性的最佳配比组合。研究表明,通过向原状土中掺入再生骨料,在一定程度上能够显著改善原状土的抗渗性能。通过三角等焓图可知再生骨料改性土抗渗性最佳配比组合范围为砼骨料20%~30%和砖骨料10%~20%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李太行
戚承志
王晓娇
周理安
关键词:  城墙  预防性保护  再生骨料  抗渗性    
Abstract: As an important part of Chinese architectural heritage, city walls have precious historical, cultural and artistic values. As part of the military defense line, walls and other auxiliary military installations constituted ancient military defense installations. The country advocates the preventive protection of architectural heritage. For preventive protection, it is necessary to understand the damage patterns and damage processes of the city walls under natural environmental conditions. At present, the preventive measures against the city walls under rainfall conditions are not perfect. This paper studies the permeability of the city wall, adding recycled brick aggregate and cement aggregate at 10%, 20%, 30%, and 40% of the mixed volume to the city wall soil, respectively. Through the orthogonal test design, combined with the triangular isenthalpic diagram, the optimal combination of modified soil permeability is obtained. Studies show that by incorporating recycled aggregate into the city wall soil, the impermeability of the city wall soil can be significantly improved to a certain extent. According to the triangular isenthalpic diagram, we can know that the optimal combination range of the permeability of the modified aggregate is 20%—30% for concrete aggregate and 10%—20% for brick aggregate.
Key words:  city wall    preventive protection    recycled aggregates    permeability resistance
                    发布日期:  2020-07-01
ZTFLH:  TU502  
基金资助: 国家自然科学基金(51774018);长江学者创新团队计划(PCSIRT, IRT_17R06)
作者简介:  李太行,1994年出生于四川,北京建筑大学硕士研究生,主要从事建筑遗产保护的学习和研究;戚承志,北京建筑大学教授,博士研究生导师,“长江学者”特聘教授,主要从事岩石力学、防灾减灾工程等方面的研究,负责完成国家级科研项目10余项。
引用本文:    
李太行, 戚承志, 王晓娇, 周理安. 再生建筑骨料添加对城墙土体抗渗性的影响[J]. 材料导报, 2020, 34(Z1): 220-223.
LI Taihang, QI Chengzhi, WANG Xiaojiao, ZHOU Li'an. Study on the Influence of Recycled Building Aggregate on the Impermeability ofCity Wall Soil. Materials Reports, 2020, 34(Z1): 220-223.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ1/220
1 Péra J, Husson S, Guilhot B. Cement & Concrete Composites, 2011, 21(2),99.
2 Khatib J M. Cement & Concrete Research, 2005, 35(4),763.
3 Kumar S, Kumar R, Bandopadhyay A, et al. Cement & Concrete Compo-sites, 2008, 30(8),679.
4 Binici H, Temiz H, Köse M M. Construction & Building Materials, 2007, 21(5),1122.
5 Filho R D T, Gonçalves J P, Americano B B, et al. Cement & Concrete Research, 2007, 37(9),1357.
6 谭艺帅,彭有开,吴徽. 混凝土, 2019(3),65.
7 郝彤,刘斌,王帅. 混凝土, 2019(2),119.
8 夏鑫,孙海燕,张帆,等. 混凝土与水泥制品, 2018(10),24.
9 Mi R J, Pan G H, Li Y, et al. Journal of Southeast University(English Edition), 2018,34(3),371.
10 周文娟,季志远,赵磊,等. 混凝土与水泥制品, 2019(3),93.
[1] 周文娟, 张志伟, 徐玉波. 建筑垃圾再生骨料无机混合料的力学及抗冻性能[J]. 材料导报, 2020, 34(Z1): 234-236.
[2] 徐培蓁, 陈发滨, 李泉荃, 任艺楠, 吴春然, 朱亚光. 微生物矿化沉积对再生骨料界面过渡区的影响[J]. 材料导报, 2020, 34(6): 6095-6099.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed