Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z1): 1-6    
  无机非金属及其复合材料 |
光子增强热电子发射(PETE)太阳能电池的研究进展
赵琦, 沈晓明, 符跃春, 何欢
广西大学资源环境与材料学院,广西有色金属及特色材料加工重点实验室,南宁 530004
Progress in Photon-enhanced Thermionic Emission (PETE) Solar Cells
ZHAO Qi, SHEN Xiaoming, FU Yuechun, HE Huan
Guangxi Key Laboratory for Non-ferrous Metal and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
下载:  全 文 ( PDF ) ( 3961KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 光子增强热电子发射(PETE)太阳能电池是新兴的太阳能电池,其综合利用了光电效应和热电子发射效应,在理论上具有较高的光电转化效率,其中真空近贴式结构的PETE太阳能电池在1 000倍的聚光条件下,理论光电转化效率将高于40%,且结合余热利用系统可以使总转化效率提升至50%以上,远超相同聚光条件下的普通光伏太阳能电池,因此受到广泛关注。本文简要介绍了PETE太阳能电池的结构和工作原理,总结了目前PETE太阳能电池研究的三个主要方向:光吸收、电子发射与表面复合机制和空间电荷效应及它们各自的研究进展,并对未来PETE太阳能电池的发展前景进行了展望,以期为发展PETE太阳能电池提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵琦
沈晓明
符跃春
何欢
关键词:  PETE太阳能电池  光电转化效率  光吸收  空间电荷效应  电子发射与表面复合机制    
Abstract: Photon-enhanced thermionic emission (PETE) solar cell is an emerging of solar cells, and it is a combination of photoelectric and thermionic emission effects, which has high photoelectric conversion efficiency in theory, in which vacuum near-contact structure of PETE solar cells under the condition of 1 000 times more concentrated, the theory of the photoelectric conversion efficiency will be higher than 40%, and the combination of waste heat utilization system can make the total conversion efficiency up to 50%, far above the same concentrated light condition of normal photovoltaic solar cells. Therefore, it has received extensive attention. The paper briefly introduces the structure and working principle of PETE solar cell, summarizes the three main research directions: light absorption, electron emission & surface recombination and space charge effect as well as research progress of PETE solar cell at present, and PETE solar cells for the future development prospect are also discussed, in order to provide references for the development of PETE solar cells.
Key words:  photon-enhanced thermionic emission solar cell    photoelectric conversion efficiency    light absorption    space charge effect    electron emission & surface recombination
                    发布日期:  2020-07-01
ZTFLH:  O462.3  
基金资助: 国家自然科学基金(61474030);广西自然科学基金项目(2015GXNSFAA139265);中国科学院重点实验室开放基金(15ZS06);广西科技攻关计划项目(1598008-15);南宁市科技攻关计划项目(20151268)
作者简介:  赵琦,2015年6月毕业于天津理工大学,获得理学学士学位。现为广西大学资源环境与材料学院硕士研究生,在沈晓明教授的指导下进行研究。目前主要研究领域为光子增强热电子发射太阳能电池;沈晓明,广西大学资源环境与材料学院教授、硕士研究生导师。1987年7月本科毕业于浙江师范大学物理学院,2003年7月在中国科学院半导体研究所固体电子学与微电子学专业取得博士学位,2003—2006年在同济大学进行博士后研究工作。2006年任职于广西大学。主要从事半导体光电薄膜材料与器件;太阳能综合利用技术研究。近年来,主要从事Ⅲ-Ⅴ族氮化物化合物半导体材料的外延生长与GaN紫外探测器、宽带光吸收太阳电池材料以及太阳能光纤导光照明方面的研究,发表论文40余篇。
引用本文:    
赵琦, 沈晓明, 符跃春, 何欢. 光子增强热电子发射(PETE)太阳能电池的研究进展[J]. 材料导报, 2020, 34(Z1): 1-6.
ZHAO Qi, SHEN Xiaoming, FU Yuechun, HE Huan. Progress in Photon-enhanced Thermionic Emission (PETE) Solar Cells. Materials Reports, 2020, 34(Z1): 1-6.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ1/1
1 胡忠文,张明锋,郑继华.能源研究与管理,2011(1),14.
2 Xiao G, Zheng G H, Qiu M, et al. Applied Energy,2018,223,134.
3 Shockley W, Queisser H J. Journal of Applied Physics,1961,32(3),510.
4 Schwede J W, Bargatin I, Riley D C, et al. Nature Materials,2010,9(9),762.
5 Kribus A, Segev G. Journal of Optics,2016,18(7),073001.
6 Wang G Y, Chang B K, Yang M Z, et al. Solar Energy,2018,174,352.
7 Smestad G P. Solar Energy Materials and Solar Cells,2004,82(1),227.
8 Wang G, Liao L P, Elseman A M, et al. Nano Energy,2019,104383.
9 Wang G Y, Chang B K, Li X F, et al. Solar Energy Materials and Solar Cells,2017,159,73.
10 Varpula A, Prunnila M. Journal of Applied Physics,2012,112(4),044506.
11 Nelson J.太阳电池物理.高扬,译.上海交通大学出版社,2011.
12 Varpula A, Tappura K, Prunnila M. Solar Energy Materials & Solar Cells,2015,134,351.
13 高海凤,杨瑞霞,杨帆,等.电子工艺技术,2010,31(3),135.
14 Schwede J W, Sarmiento T, Narasimhan V K, et al. Nature Communications,2013,4(1),1576.
15 Buencuerpo J, Llorens J M, Zilio P, et al. Optics Express,2015,23(19),A1220.
16 Garnett E, Yang P. Nano letters,2010,10(3),1082.
17 Diao Y, Liu L, Xia S, et al. Applied Nanoscience,2020,10(3),807.
18 Xia S, Liu L, Diao Y, et al. Journal of Materials Science,2017,52(21),12795.
19 Diao Y, Liu L, Xia S, et al. Solar Energy,2019,194,510.
20 Sahasrabuddhe K, Schwede J W, Bargatin I, et al. Journal of Applied Physics,2012,112(9),941.
21 Zhuravlev A G, Romanov A S, Alperovich V L. Appled Physics Letters,2014,105(25),251602.
22 Zhuravlev A G, Khoroshilov V S, Alperovich V L. Applied Surface Science,2019,483,895.
23 Martinelli R U. Journal of Applied Physics,1974,45(3),1183.
24 Smestad G P. Solar Energy Materials and Solar Cells,2004,82(1-2),227.
25 Segev G, Rosenwaks Y, Kribus A. Solar Energy Materials & Solar Cells,2012,107,125.
26 Tang W D, Yang W Z, Yang Y, et al. Materials Science in Semiconductor Processing,2014,25,143.
27 Yang Y, Yang W Z, Sun C D. Materials Science in Semiconductor Proces-sing,2015,35,120.
28 Segev G, Rosenwaks Y, Kribus A. Journal of Applied Physics,2013,114(4),044505.
29 Yang Y, Yang W, Sun C. Solar Energy Materials and Solar Cells,2015,132,410.
30 唐伟东,杨文正,杨阳,等.光子学报,2013,43(6),625002.
31 Wang K, Fu R, Wang G, et al. Optics Communications,2017,402,85.
32 Su S, Wang Y, Liu T, Su G. Solar Energy Materials & Solar Cells,2014,121(4),137.
33 Ito T,Cappelli M A. Applied Physics Letters,2012,101,213901.
34 Segev G, Weisman D, Rosenwaks Y, et al. Applied Physics Letters,2015,107(1),762.
35 Wang Y, Li H, Hao H, et al. Applied Thermal Engineering,2019,157,113758.
36 Reck K, Hansen O. Applied Physics Letters,2014,104(2),023902.1.
37 Wang H, Kong H, Pu Z, et al. Energy Conversion and Management,2020,210,112699.
No related articles found!
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed