Please wait a minute...
材料导报  2020, Vol. 34 Issue (8): 8083-8089    https://doi.org/10.11896/cldb.19040057
  无机非金属及其复合材料 |
FTIR分峰拟合法定量分析沥青胶浆在含盐高温高湿环境中的结构变化
张勤玲1,2, 黄志义1
1 浙江大学建筑工程学院,杭州 310058;
2 塔里木大学水利与建筑工程学院,阿拉尔 843300
Quantitative Analysis of Structural Changes of Asphalt Mastic with Curve-fitted of FTIR Spectrum in Salty High Temperature and High Humidity
ZHANG Qinling1,2, HUANG Zhiyi1
1 College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China;
2 College of Water Conservancy and Architecture Engineering, Tarim University, Alar 843300, China
下载:  全 文 ( PDF ) ( 5890KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为研究南方滨海盐环境夏季高温高湿作用对沥青胶浆化学组分的影响,分析了基质沥青胶浆和SBS改性沥青胶浆在不同氯盐浓度(0%、5%、10%,质量分数)下的傅里叶变换红外光谱。深入分析了沥青胶浆光谱中1 780~900 cm-1波数段的吸收峰叠加带,基于二阶求导确定了叠加子峰个数和波数位置,采用Origin 2017软件对叠加带进行了曲线拟合分析。利用子峰面积与叠加带面积的比例间接表征了含盐高温高湿环境对沥青胶浆各化学组分的作用。曲线拟合结果显示:不同盐浓度环境中,基质沥青胶浆和SBS改性沥青胶浆的红外指标值呈现出一致的变化规律,即随着盐蚀干湿循环作用次数的增加,亚砜基官能团指数(IS=O)和芳香官能团指数(IAr)值均增大,脂肪支链指数(IB,a)、脂肪族官能团指数(IB)及丁二烯官能团指数(IC=C)值均减小;由于无机盐的“盐析”效应,在干湿循环作用下,盐分的存在加剧了沥青胶浆在水溶液中的老化;SBS改性沥青胶浆表现出更优异的抗盐老化性能。研究结果表明,傅里叶变换红外光谱技术结合曲线拟合分析方法能反映沥青胶浆在盐浓度与干湿循环耦合作用下内部化学组分变化,其为评价沥青胶浆在含盐高温高湿环境中的老化提供了有效依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张勤玲
黄志义
关键词:  道路工程  盐环境  高温高湿  红外光谱  老化特性    
Abstract: In order to study the effects of high temperature and high humidity on the chemical composition of asphalt mastic in the coastal salt environment in south of China, the fourier transform infrared spectra (FTIR) of base- and SBS modified asphalt mastics at different salt concentrations(0%,5% and 10% by weight of water, respectively) were analyzed. In order to deeply analyze the absorption peak overlapping zone of 1 780—900 cm-1 wavenumbers in the asphalt mastics spectrum, the numbers and position of the overlapping sub-peaks were determined based on the second derivative, and the curve fitting analysis was performed on the superimposed band by Origin 2017 software. The effect of salt high temperature and high humidity environment on the chemical components of asphalt mastics were indirectly characterized by the area ratio of the sub-peak and the overlapping zone. The curve fitting results showed that the infrared index of base- and SBS asphalt mastics showed a consistent change with the increase of numbers of dry-wet cycles in different salt concentration, the values of sulfoxide indexes and aromatic indexes increased, and the aliphatic branch indexes, aliphatic index and butadiene indexes decreased. Because of the “salting out” effect of inorganic salts, the salt aggravate the ageing of asphalt mastics in water under the effect of dry-wet cycles. The SBS asphalt mastics shows better anti-agei-ng performance with a lower increase in sulfoxide index after ageing. The research results showed that FTIR technique combined with the curve fitting analysis method could reflect changes in internal chemical composition of asphalt mastics under the coupling effect of salt solution and dry-wet cycles, which also provided an effective method for evaluating the aging of asphalt materials in salt high temperature and humidity environment.
Key words:  road engineering    salt environment    high temperature and high humidity    FTIR    ageing characteristics
                    发布日期:  2020-04-25
ZTFLH:  U416.217  
基金资助: 浙江省交通科技项目(2018QNA4023);宁波市交通运输委员会科技计划项目(2014191)
通讯作者:  hzy@zju.edu.cn   
作者简介:  张勤玲,浙江大学建筑工程学院,博士研究生,塔里木大学水利与建筑工程学院,副教授。主要从事道路工程沥青路面新材料、结构设计等方面的教学与科学研究工作。
黄志义,浙江大学教授,博士研究生导师。主要研究领域:现代道路建设与维护新材料与新技术;交通安全与节能环保新技术;隧道健康监测与防火安全;智慧交通新技术。近年来主持或主参国家自然基金、省部级及地方合作等交通领域科研项目多项,发表论文70余篇,获省部级科学技术奖3项,主编教材1套。
引用本文:    
张勤玲, 黄志义. FTIR分峰拟合法定量分析沥青胶浆在含盐高温高湿环境中的结构变化[J]. 材料导报, 2020, 34(8): 8083-8089.
ZHANG Qinling, HUANG Zhiyi. Quantitative Analysis of Structural Changes of Asphalt Mastic with Curve-fitted of FTIR Spectrum in Salty High Temperature and High Humidity. Materials Reports, 2020, 34(8): 8083-8089.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19040057  或          http://www.mater-rep.com/CN/Y2020/V34/I8/8083
1 Wu J R, Ma Q Y, Wang W J. Journal of Highway and Transportation Research and Development, 2014, 31(8), 30(in Chinese).
吴金荣, 马芹永, 王文娟. 公路交通科技, 2014, 31(8),30.
2 Cong P L, Chen S F, Chen H X. Highway, 2011(6),180(in Chinese).
丛培良, 陈拴发, 陈华鑫. 公路, 2011(6), 180.
3 Xiao Q Y, Bai X Q, Hu H X, et al. China Harbour Engineering, 2012(4),54(in Chinese).
肖庆一, 白锡庆, 胡海学,等. 中国港湾建设, 2012(4),54.
4 Suo G H. Experimental study and engineering of asphalt concrete pavement in saline land. Master’s Thesis, Jilin University, China, 2013(in Chinese).
孙国红. 盐渍土地区沥青混凝土路面病害试验及研究. 硕士学位论文, 吉林大学, 2013.
5 Zhang K, Zhang Z Q. Journal of South China University of Technology (Natural Science Edition), 2015, 43(8), 106(in Chinese).
张苛, 张争奇. 华南理工大学学报(自然科学版), 2015, 43(8), 106.
6 Zhang G H. Research of damage mechanism and service life of coastal area asphalt pavement in North China. Ph.D. Thesis, Dalian University of Technology, China, 2013(in Chinese).
张光海. 北方滨海地区沥青混凝土路面损伤机理及使用寿命研究. 博士学位论文, 大连理工大学, 2013.
7 Zhao Q, Zhao J. Journal of Dalian Jiaotong University, 2016, 37(2), 69(in Chinese).
赵青, 赵军. 大连交通大学学报, 2016, 37(2), 69.
8 Zheng S J, Liu F M, Li Y C, et al. Highway Engineering, 2017(5),143(in Chinese).
郑霜杰, 刘凤鸣, 李应成,等. 公路工程, 2017(5),143.
9 Wang Y Z. Highway Engineering, 2015(5),250(in Chinese).
王义忠. 公路工程, 2015(5), 250.
10 Xiong R, Chen S F, Guan B W, et al. Journal of Wuhan University of Technology, 2014, 36(10), 45(in Chinese).
熊锐, 陈栓发,关博文, 等. 武汉理工大学学报, 2014, 36(10), 45.
11 Highway Research Institute of the Ministry of Transport. JTGF 40-2004, Technical specifications for construction of highway asphalt pavement, Communications Press, China, 2005(in Chinese).
交通运输部公路科学研究院. JTGF 40-2004, 公路沥青路面施工技术规范, 人民交通出版社, 2005.
12 Highway Research Institute of the Ministry of Transport. JTGE 42-2005, Test methods of aggregate for highway engineering, Communications Press, China, 2005(in Chinese).
交通运输部公路科学研究院. JTGE 42-2005, 公路工程集料试验规程, 人民交通出版社, 2005.
13 Jiang W. Research on the self-healing capacity of bitumen mastics. Ph.D. Thesis, Wuhan University of Technology, China, 2011(in Chinese).
姜睆. 沥青胶浆自愈合能力研究. 博士学位论文, 武汉理工大学, 2011.
14 Highway Research Institute of the Ministry of Transport. JTG E20-2011 Standard test methods bitumen and bitumen mixtures for highway enginee-ring, Communications Press, China,2011(in Chinese).
交通运输部公路科学研究院. JTG E20-2011 公路工程沥青及沥青混合料试验规程, 人民交通出版社, 2011.
15 Weng S F, Xu Y Z. Fourier infrared spectroscopy analysis (Third Edition), Chemical Industry Press, China, 2016(in Chinese).
翁诗甫, 徐怡庄. 傅里叶红外光谱分析(第三版),化学工业出版社, 2016.
16 Hu Y G, Li W, Hu J M. Spectrochimica Acta Part A, 2005, 62 (1-3),16.
17 Hu Y G, Zhang X X, Zhao Z Y, et al. Journal of Chongqing University (Natural Science Edition), 2012,35(5),76(in Chinese).
胡耀垓, 张晓星, 赵正予, 等. 重庆大学学报: 自然科学版, 2012, 35(5),76.
18 Chen H X, Chen S F, Wang B G. Aging and Application of Synthetic Materials, 2009, 38(1),13(in Chinese).
陈华鑫, 陈栓发, 王秉纲. 合成材料老化与应用, 2009, 38(1),13.
19 Zhao Y, Gu F, Xu J, et al. Journal of Wuhan University of Technology-Materials Science Edition, 2010, 25(6),1047.
20 Lu Z Q, Bu L H. Journal of Shanghai Second Polytechnic University, 2000, 17(1),14(in Chinese).
吕争青, 卜乐宏. 上海第二工业大学学报, 2000,17(1),14.
21 Camaro B,Simondi-Teisseire,Vistoli P P. In: Proceedings of the International Workshop on the Safety and Performance Evaluation of Bituminization Processes for Radioactive Waste, Nuclear Research Institute Rez. Czech Republic, 1999, pp. 157.
22 Gwinner, Comportement sous eau des de′chets radioactifs bitume’s: validation expe′rimentale du mode`le de de′gradation COLONBO. Ph.D. Thesis, Institut National Polytechnique de Lorraine, Nancy, France, 2004.
23 Wang L S. Progress in organic pollution chemistry, Chemical Industry Press, China, 2006(in Chinese).
王连生.有机污染化学进展, 化学工业出版社, 2006.
24 Brodersen K. In: Proceedings of the International Workshop on the Safety and Performance Evaluation of Bituminization Processes for Radioactive Waste, Nuclear Research Institute Rez.Czech Republic, 1999, pp. 147.
25 Cai H M. Research on the effect of asphalt components to environment in the course of using. Ph.D. Thesis, China University of Petroleum, China, 2010(in Chinese).
才洪美. 沥青使用过程中对环境的影响研究. 博士学位论文, 中国石油大学, 2010.
26 Zhang X D, Ren X. Fu G W. Journal of Transport Science and Enginee-ring, 2012, 28(1), 6(in Chinese).
查旭东, 任旭, 傅广文. 交通科学与工程, 2012, 28(1),6.
[1] 丛卓红, 陈恒达, 郑南翔, 周晚君. 水泥混凝土路面纹理的研究进展[J]. 材料导报, 2020, 34(9): 9110-9116.
[2] 王晓燕, 王继梅, 侯国艳. 富锌载银可溶玻璃抗菌材料的性能[J]. 材料导报, 2019, 33(Z2): 92-96.
[3] 张庆, 侯德华, 史纪村. 橡胶沥青的微观表征方法及其微观特性综述[J]. 材料导报, 2019, 33(Z2): 247-253.
[4] 杜娟, 刘青茂, 王付胜, 宋肖肖, 胡雪兰. Ti-6Al-4V钛合金在氢氟酸-硝酸体系下的缓蚀行为及机理[J]. 材料导报, 2019, 33(6): 1000-1005.
[5] 李微, 韩森, 黄啟波, 姚腾飞, 徐鸥明. 细粒式薄表层沥青混合料中粗集料的骨架特性[J]. 材料导报, 2019, 33(4): 617-624.
[6] 熊锐, 杨发, 关博文, 谢超, 李立顶, 盛燕萍, 陈华鑫. 路用高抗滑集料耐磨性能评价与机理分析[J]. 材料导报, 2019, 33(20): 3436-3440.
[7] 张航, 郝培文, 凌天清, 王学武, 何亮. 高温重复荷载作用下复合纤维沥青混合料细微观结构分析[J]. 材料导报, 2018, 32(6): 987-994.
[8] 赫连一哲, 马晓宇, 崔素萍, 万业强. 原位漫反射红外光谱研究NO和NH3在MnOx/TiO2催化材料上的吸附行为及反应机理[J]. 材料导报, 2018, 32(22): 3973-3978.
[9] 刘子铭,陈华鑫,熊锐,王泳丹,王小雯. 复掺钢丝绒纤维/水镁石纤维沥青胶浆性能研究[J]. 《材料导报》期刊社, 2018, 32(2): 295-300.
[10] 王泳丹, 刘子铭, 郝培文. 废旧玻璃在沥青混合料中的应用研究进展[J]. 材料导报, 2018, 32(15): 2626-2634.
[11] 刘梦梅, 韩 森, 潘 俊, 李 微, 任万艳. 水性环氧树脂乳化沥青在高温、低温和浸水条件下的粘结性能[J]. 《材料导报》期刊社, 2018, 32(10): 1716-1720.
[12] 李亚军,王学重. 集成过程分析技术和群体粒数衡算模拟的药物材料造粒过程决策支持系统[J]. 《材料导报》期刊社, 2018, 32(10): 1721-1729.
[13] 张争奇, 罗要飞, 张苛. 沥青混合料汉堡车辙试验评价研究综述*[J]. 《材料导报》期刊社, 2017, 31(3): 96-105.
[14] 姚晓光,张万磊, 张争奇,栗培龙. 老化SBS改性沥青二次改性再生工艺及机理研究[J]. 《材料导报》期刊社, 2017, 31(24): 79-85.
[15] 杨医博, 杨凯越, 吴志浩, 林少群, 丘广宏, 燕哲, 彭章锋, 林燕姿, 郭文瑛, 王恒昌. 配筋超高性能混凝土用作免拆模板对短柱力学性能影响的实验研究*[J]. CLDB, 2017, 31(23): 120-124.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[6] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[7] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[8] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[9] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed