Please wait a minute...
材料导报  2020, Vol. 34 Issue (20): 20152-20158    https://doi.org/10.11896/cldb.19080133
  高分子与聚合物基复合材料 |
CNTs/PBS复合材料的制备及性能研究
张奇锋1, 王忠1, 贾仕奎1,2, 赵中国1, 曹乐1, 陈立贵1
1 陕西理工大学材料科学与工程学院,汉中 723000
2 西安交通大学理学院,西安 710049
Preparation and Properties of Carbon Nanotubes/Polybutylene Succinate Composites
ZHANG Qifeng1, WANG Zhong1, JIA Shikui1,2, ZHAO Zhongguo1, CAO Le1, CHEN Ligui1
1 School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China
2 School of Science, Xi’an Jiaotong University, Xi’an 710049, China
下载:  全 文 ( PDF ) ( 6304KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以聚丁二酸丁二醇脂(PBS)为基体,碳纳米管(CNTs)为增强材料,通过湿法处理技术,采用硅烷偶联剂KH570和聚乙烯吡咯烷酮(PVP)对羧基化碳纳米管(CNTs-COOH)进行表面改性,再利用双螺杆挤出机熔融共混制备一系列CNTs/PBS复合材料。采用扫描电子显微镜(SEM)、广角X射线衍射仪(WAXD)、差示扫描量热仪(DSC)、偏光显微镜(POM)、热重分析仪(TG)和万能试验机以及悬臂梁冲击试验机研究了复合材料的界面相容性、热性能、结晶性能和力学性能。结果表明:CNTs/PBS复合材料的团聚明显,其结晶度、拉伸强度、冲击强度和弯曲强度分别较纯PBS相提高了7.77%、3.1%、13.2%与15.8%,而断裂伸长率下降了14.2%;改性后,CNTs-COOH-KH570/PBS复合材料较CNTs-COOH-PVP/PBS复合材料的性能更为优异,其分散形态得到很好的改善,结晶度、拉伸强度、冲击强度和弯曲强度分别较纯PBS提高了12.23%、11.8%、25.8%与24.3%,断裂伸长率下降了8.1%;同时CNTs的引入对PBS复合材料的热稳定性有一定程度的改善。与纯PBS相比,CNTs/PBS复合材料的体积电阻率下降了56.6%,电导率提升了1个数量级,CNTs-COOH、CNTs-COOH-KH570及CNTs-COOH-PVP 改性PBS复合材料的体积电阻率较纯PBS分别下降了59.8%、60.9%和62.5%,且电导率均较纯PBS提高了1个数量级。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张奇锋
王忠
贾仕奎
赵中国
曹乐
陈立贵
关键词:  聚丁二酸丁二醇脂  碳纳米管  结晶性能  力学性能  电性能    
Abstract: Polybutylene succinate (PBS) was as a matrix material, and carbon nanotubes (CNTs) was as a reinforcing materials. Through wet processing technology, surface modified of carboxylated carbon nanotube (CNTs-COOH) with silane coupling agent KH570 and polyvinyl pyrrolidone(PVP) were successfully obtained, and then the different kinds of CNTs and PBS were prepared by melt blending using twin-screw extruder. The interfacial compatibility, thermal properties, crystallization properties and mechanical properties of the composites were investigated by SEM, WAXD, DSC, POM, TG and universal testing machines and cantilever beam impact testing machine. The results showed: compared with pure PBS, the agglomeration of CNTs/PBS composites was obvious, and their crystallinity, tensile strength, impact strength and flexural strength were increased by 7.77%, 3.1%, 13.2% and 15.8%, and elongation at break was decreased by 14.2%. After modification, the performance of CNTs-COOH-KH570/PBS composites was better than that of CNTs-COOH-PVP/PBS composites. The dispersion morphology of CNTs-COOH-KH570/PBS composites was improved, and the crystallinity, tensile strength, impact strength and flexural strength were increased by 12.23%, 11.8%, 25.8% and 24.3%, and elongation at break was decreased by 8.1%, compared with PBS. Meanwhile, the thermal stability of PBS composites showed slightly increase with the introduction of CNTs. Moreover,compared with pure PBS, the volume resistivity of CNTs/PBS composites decreased by 56.6%, and the conductivity increased by one order of magnitude, while, the volume resistivity of CNTs-COOH, CNTs-COOH-KH570 and CNTs-COOH-PVP modified PBS composites decreased by 59.8%, 60.9% and 62.5%, respectively. And, compared with pure PBS, the electrical conductivity for all of PBS-based composites modified with surface treated CNTs increased by one order of magnitude.
Key words:  polybutylene succinate    carbon nanotube    crystallization performance    mechanical properties    electrical properties
               出版日期:  2020-10-25      发布日期:  2020-11-06
ZTFLH:  TB332  
基金资助: 国家自然科学基金(51703121);中国博士后科学基金特别资助项目(2018T111050)
通讯作者:  shikuijia@snut.edu.cn   
作者简介:  张奇锋,出生于1995年,男,陕西,硕士研究生,就读于陕西理工大学材料科学与工程学院,材料加工工程专业,目前以第一作者已发表中文核心期刊论文4篇,研究方向为生物可降解聚合物复合材料及电子屏蔽性能研究。
贾仕奎,陕西理工大学副教授,硕士研究生导师。2014年博士毕业于华南理工大学,2014年7月到陕西理工大学材料科学与工程学院工作,2016—2019年在西安交通大学理学院从事博士后研究工作、合作研究。以第一作者或通讯作者在国内外学术期刊上发表论文50余篇,申请国家发明专利11项,申请国际发明专利2项,其中授权国家发明专利6项,授权实用新型专利2项。其团队主要研究方向包括:生物可降解聚合物复合材料的先进成型及其功能化研究;复合材料的微观结构、流变特性及物理机械性能研究;3D打印技术及其聚合物复合材料的制备。负责科研项目5项,包括国家自然科学基金青年项目,博士后科学基金特别资助项目,博士后科学基金面上项目一等资助,陕西省自然科学基金基础研究项目,陕西省高校科协青年人才托举项目。获陕西省高校科学技术二等奖一项,陕西理工大学优秀科技成果一等奖、二等奖各一项。
引用本文:    
张奇锋, 王忠, 贾仕奎, 赵中国, 曹乐, 陈立贵. CNTs/PBS复合材料的制备及性能研究[J]. 材料导报, 2020, 34(20): 20152-20158.
ZHANG Qifeng, WANG Zhong, JIA Shikui, ZHAO Zhongguo, CAO Le, CHEN Ligui. Preparation and Properties of Carbon Nanotubes/Polybutylene Succinate Composites. Materials Reports, 2020, 34(20): 20152-20158.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19080133  或          http://www.mater-rep.com/CN/Y2020/V34/I20/20152
1 Sun J H, Feng X, Li P, et al. Acta Polymerica Sinica, 2016(7), 946(in Chinese).
孙晋皓, 冯欣, 李鹏, 等. 高分子学报, 2016 (7), 946.
2 Lv S S, Cao J, Tan H Y, et al. Acta Materiae Compositae Sinica, 2015, 32(2), 347(in Chinese).
吕闪闪, 曹军, 谭海彦, 等. 复合材料学报, 2015, 32(2), 347.
3 Reddy M M, Vivekanandhan S, Misra M, et al. Progress in Polymer Science, 2013, 38(10-11), 1653.
4 Chang Y, Chen Z Z, Yang Y Q. Materials Reports B:Research Papers, 2019, 33(8), 2808(in Chinese).
常悦, 陈支泽, 杨一奇. 材料导报:研究篇, 2019, 33(8), 2808.
5 Panaitescu D M, Frone A N, Chiulan I. Industrial Crops and Products, 2016, 93, 251.
6 Lambert S, Wagner M. Chemical Society Reviews, 2017, 46(22), 6855.
7 Xu Y, Zhang S, Peng X, et al. European Polymer Journal, 2018, 99, 250.
8 Zeng J B, Jiao L, Li Y D, et al. Carbohydrate Polymers, 2011, 83(2), 762.
9 Li S L, Xu Y, Chen N T, et al. Materials Reports B:Research Papers, 2018, 32(8), 2882(in Chinese).
李绍龙, 徐艺, 陈农田, 等. 材料导报:研究篇, 2018, 32(8), 2882.
10 Tan L, Chen Y, Zhou W, et al. Polymer, 2011, 52(16), 3587.
11 Tian W, Yu W H, Luo K, et al. Materials Reports, 2018, 32(S1), 274(in Chinese).
田伟, 于文海, 罗鲲, 等. 材料导报, 2018, 32(专辑31), 274.
12 Liu W G, Zhang X C, Li H Y, et al. China Plastics, 2012(4), 86(in Chinese).
刘文广, 张秀成, 李红媛, 等. 中国塑料, 2012(4), 86.
13 Liu Q, Yao X, Zhang B J, et al. Chinese Journal of Inorganic Chemistry, 2019, 35(3), 459(in Chinese).
刘钦, 姚巡, 张博健, 等. 无机化学学报, 2019, 35(3), 459.
14 Liu Z Y, Xiao B L,Wang W G, et al. Composites Part A, 2017, 94, 189.
15 Yu M F, Files B S, Arepalli S, et al. Physical Review Letters, 2014, 84(3-4), 5552.
16 Wang Y, Feng Z B,Zuo H L, et al. Acta Polymerica Sinica, 2019, 50(5), 485(in Chinese).
王怡, 冯展彬, 左洪礼, 等. 高分子学报, 2019, 50(5), 48.
17 Wang Y, Mei Y, Li Y, et al. Polymer Materials Science & Engineering, 2018, 34(10), 40(in Chinese).
王颖, 梅园, 李颖, 等. 高分子材料科学与工程, 2018, 34(10), 40.
18 Wang C C, He D L, Cui Yi. Journal of Materials Engineering, 2018, 46(9), 1(in Chinese).
王程成, 贺德龙, 崔溢. 材料工程, 2018, 46(9), 1.
19 Baji A, Mai Y W, Wong S C, et al. Composites Science & Technology, 2010, 70(9), 1401.
20 Dong H B, Li C Q, Zou X H. Materials Reports A:Review Papers, 2018, 32(2), 427(in Chinese).
董怀斌, 李长青, 邹霞辉. 材料导报:综述篇, 2018, 32(2), 427.
21 Huang Y, Liu J H, Yang Y B. Polymer Materials Science & Engineering, 2019, 35(2), 91(in Chinese).
黄勇, 刘俊红, 杨永斌. 高分子材料科学与工程, 2019, 35(2), 91.
22 General administration of Quality Supervision, Inspection and Quarantine of the People Republic of China. Plastics—Determination of tensile properties: GB/T1040-2006,China Standards Press, China,2006(in Chinese).
中华人民共和国国家质量监督检验检疫总局. 塑料拉伸性能试验方法: GB/T1040-2006塑料拉伸性能试验方法,中国标准出版社, 2006.
23 General administration of Quality Supervision, Inspection and Quarantine of the People Republic of China. Plastics-determination of flexural properties: GB/T9341-2000, Standards Press of China, China,2000(in Chinese).
中华人民共和国国家质量监督检验检疫总局. 塑料弯曲性能试验方法:GB/T9341-2000, 中国标准出版社, 2000.
24 General administration of Quality Supervision, Inspection and Quarantine of the People Republic of China. Plastics-determination of flexural properties: GB/T1843-2008, Standards Press of China, China,2000(in Chinese).
中华人民共和国国家质量监督检验检疫总局. 塑料弯曲性能试验方法:GB/T 1843-2008塑料弯曲性能试验方法, 中国标准出版社, 2000.
25 Guo R B. The study of properties and structure of PBS/Lignin composites processed by vane extruder. Master’s Thesis, South China University of Technology, China, 2013(in Chinese).
郭锐标. 叶片挤出机加工PBS/木质素复合材料的性能与结构研究. 硕士学位论文, 华南理工大学, 2013.
26 Wang H Y, Li W J, Chang Z D, et al. Chinese Journal of Inorganic Chemistry, 2011, 27(2), 269(in Chinese).
王环颖, 李文军, 常志东, 等. 无机化学学报, 2011, 27(2), 269.
27 Qiu Z, Yang W. Polymer, 2006, 47(18), 6429.
28 Urquijo J, Dagréou S. Journal Applied Polymer Science, 2017, 134, 45265.
29 Zhi X, Zhang H B, Liao Y F, et al. Carbon, 2015, 82, 195.
[1] 张莉. 碳纳米管的吸附性能及对水中污染物的吸附:综述[J]. 材料导报, 2020, 34(Z1): 72-77.
[2] 吕展衡, 陈品鸿, 许冰, 罗颖, 周武艺, 董先明. 巯基-双键点击反应制备光固化红光转光膜及其性能[J]. 材料导报, 2020, 34(Z1): 111-115.
[3] 吴学志, 尹邦跃, 郑新海. 碳纳米管增强UO2燃料力学性能研究[J]. 材料导报, 2020, 34(Z1): 153-156.
[4] 王枭, 郭伟, 胡月阳, 陈芹, 仇佳琳, 李正阳, 陈佳彬, 管荣成. 硫硅酸钙的合成及水化性能的研究[J]. 材料导报, 2020, 34(Z1): 169-172.
[5] 吴昊宇, 吴培红, 卞立波, 陶志. 纤维珠链在混凝土抗裂性能设计中的应用研究[J]. 材料导报, 2020, 34(Z1): 193-198.
[6] 李文杰, 陈宜虎, 范理云, 吕海波. 钙质砂水泥砂浆力学性能试验研究及微观结构分析[J]. 材料导报, 2020, 34(Z1): 224-228.
[7] 江雯, 蒋璐瑶, 黄伟九, 郭非, 董海澎. 退火处理对搅拌摩擦加工LZ91双相镁锂合金微观组织及力学性能的影响[J]. 材料导报, 2020, 34(Z1): 307-311.
[8] 宋文杰, 刘洁, 董会萍, 张光, 王彤. 超轻镁锂合金熔炼工艺研究[J]. 材料导报, 2020, 34(Z1): 316-321.
[9] 黄同瑊, 晁代义, 宋晓霖, 张伟, 王志雄, 张华, 吕正风. 热轧工艺对Al-Cu-Mg合金组织及性能的影响[J]. 材料导报, 2020, 34(Z1): 322-324.
[10] 陈姝敏, 吴迪, 何文浩, 陈勇. 银纳米粒子负载的石墨烯基环氧树脂复合材料的制备及性能[J]. 材料导报, 2020, 34(Z1): 503-506.
[11] 汪知文, 李碧雄. 稻壳灰应用于水泥混凝土的研究进展[J]. 材料导报, 2020, 34(9): 9003-9011.
[12] 徐翔宇, 郑勇, 吴昊, 丁青军, 王丽珠, 欧阳杰. 无磁金属陶瓷的研究进展[J]. 材料导报, 2020, 34(9): 9064-9068.
[13] 李世磊, 胡平, 段毅, 左烨盖, 邢海瑞, 李辉, 邓洁, 冯鹏发, 王快社, 胡卜亮. 掺杂方式对钼合金组织与力学性能影响的研究进展[J]. 材料导报, 2020, 34(9): 9132-9142.
[14] 靳贺松, 李福海, 何肖云峰, 王江山, 胡丁涵, 胡志明. 聚丙烯纤维水泥基复合材料的抗冻性能研究[J]. 材料导报, 2020, 34(8): 8071-8076.
[15] 陶继闯, 卢一平. Mo含量对Al0.1CoCrCu0.5FeNiMox高熵合金的组织结构、力学性能及耐蚀性能的影响[J]. 材料导报, 2020, 34(8): 8096-8099.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed