Please wait a minute...
材料导报  2020, Vol. 34 Issue (18): 18183-18187    https://doi.org/10.11896/cldb.20030208
  高分子与聚合物基复合材料 |
陶瓷/纤维复合材料层间混杂结构对装甲板抗侵彻性能的影响
秦溶蔓, 朱波, 乔琨, 袁小敏
山东大学材料科学与工程学院,济南 250061
Effect of Hybrid Structure of Ceramic/Fiber Composite Material on Penetration Resistance of Armor Plate
QIN Rongman, ZHU Bo, QIAO Kun, YUAN Xiaomin
School of Material Science and Engineering, Shangdong University, Ji'nan 250061, China
下载:  全 文 ( PDF ) ( 3581KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 由陶瓷和纤维复合材料制成的装甲系统被广泛应用于防御穿甲弹的袭击。而防弹板作为装甲武器系统的重要组成部件,其抗冲击能力的强弱关系到装甲武器的安全保卫能力。本研究旨在探讨装甲系统中纤维层的层间混杂效应以及陶瓷层铺设位置及厚度对装甲板抗冲击能力的影响。实验使用54式12.7 mm直径穿甲弹为冲击体,将碳化硅陶瓷、碳纤维环氧复合材料和UHMWPE/环氧复合材料相结合,采用显式有限元软件ABAQUS/Explicit对靶板的侵彻行为进行了模拟。结果表明:纤维层的层间混杂方式对层合板防弹效果有较大的影响,以最优层间混杂结构制成的碳纤维/UHMWPE复合材料层合板的抗侵彻性能优于单一纤维复合材料制成的层合板;陶瓷层铺设位置在两层纤维层中间的装甲板结构可取得较理想的吸能效果;总厚为10 mm的装甲板采用8 mm陶瓷时防弹性能最强,但考虑到制作工艺及成本,2 mm的陶瓷板是最佳选择。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
秦溶蔓
朱波
乔琨
袁小敏
关键词:  冲击模拟  陶瓷/纤维  复合材料  抗侵彻性能    
Abstract: Armor systems made of ceramic and fiber composites are widely used to against armor-piercing bullets. As an important part of armor weapon system, the anti-impact capability of bulletproof plate is related to the security capability of armor weapon. The purpose of this paper is to investigate the interlayer hybrid effect of the fiber layer in the armor system and the influence of the position and thickness of the ceramic layer on the target's impact resistance. In the experiment, the penetrating behavior of the target plate was simulated by ABAQUS/Explicit using the 54 type 12.7 mm diameter penetrator as the impact body, combining silicon carbide ceramics, carbon fiber epoxy composite and UHMWPE fiber epoxy composites to form armor plates. The results show that the fiber interlayer hybrid mode has a great influence on the bulletproof effect of laminate. The penetration resistance of composite laminates with the optimal interlayer hybrid structure is better than single fiber composite laminates. The armor layer structure with ceramic layer laid in the middle of two fiber layers can achieve relatively ideal energy absorption effect. The armor plate with a total thickness of 10 mm uses the 8 mm ceramic can have the best ballistic resistance, but considering the manufacturing process and cost, 2 mm ceramic plate is the best choice.
Key words:  impact simulation    ceramic fiber    composite material    penetration resistance
                    发布日期:  2020-09-12
ZTFLH:  TJ03  
基金资助: 国家重点研发计划项目(2016YFC0301402)
通讯作者:  82107918@qq.com   
作者简介:  秦溶蔓,2015年毕业于山东大学软件工程专业,获得硕士学位。现博士就读于山东大学材料科学与工程学院,师从朱波教授,主要研究方向为碳纤维防弹性能的研究。
朱波,毕业于北京科技大学热能专业,博士研究生导师,现任山东大学教授,山东大学碳纤维工程技术研究中心副主任、山东大学材料学院高分子材料研究所所长。兼任山大英利先进纤维工程技术中心主任,山东省航空航天学会理事,山东省复合材料学会常务理事,中国电工技术学会电热专业委员会委员。荣获山东省有突出贡献的中青年专家,山东省西部隆起带引进人才,山东半岛国家资助创新示范区“蓝色汇智双百人才”,山东省技术转移十佳个人,江苏省高层次创新创业人才,吉林市行业领军专家等荣誉称号。出版专著4部,授权专利200余项,发表论文170余篇。
引用本文:    
秦溶蔓, 朱波, 乔琨, 袁小敏. 陶瓷/纤维复合材料层间混杂结构对装甲板抗侵彻性能的影响[J]. 材料导报, 2020, 34(18): 18183-18187.
QIN Rongman, ZHU Bo, QIAO Kun, YUAN Xiaomin. Effect of Hybrid Structure of Ceramic/Fiber Composite Material on Penetration Resistance of Armor Plate. Materials Reports, 2020, 34(18): 18183-18187.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20030208  或          http://www.mater-rep.com/CN/Y2020/V34/I18/18183
1 Sarva S, Nemat-Nasser S, Mcgee J, et al. International Journal of Impact Engineering, 2007, 34(2), 277.
2 Naik N, Kumar S, Ratnaveer D, et al. International Journal of Damage Mechanics, 2013, 22(2), 145.
3 Roeder B A, Sun C T. International Journal of Impact Engineering, 2001, 25(2), 169.
4 Signetti S, Pugno N M. Journal of the European Ceramic Society, 2014, 34(11), 2823.
5 Medvedovski E. Ceramics International, 2010, 36, 2103.
6 Medvedovski E. Ceramics International, 2010, 36, 2117.
7 Zhou Z, Wu G, Jiang L, et al. Materials & Design, 2014, 63, 658.
8 Karamis M B, Tasdemirci A, Nair F. Composites Part A (Applied Science and Manufacturing), 2003, 34, 217.
9 Sun Y, Shi B H, Li T T, et al. Journal of Solid Rocket Technology, 2016(39),709(in Chinese).
孙颖, 史宝会,李涛涛,等. 固体火箭技术, 2016(39), 709.
10 Pandya K S, Pothnis J R, Ravikumar G, et al. Materials & Design, 2013, 44, 128.
11 Yahaya R, Sapuan S M, Jawaid M, et al. Measurement, 2016,77, 335.
12 Munoz R, Martinez-Hergueta F, Galvez F, et al. Composite Structures, 2015, 127, 141.
13 Peijs A A J M, Catsman P, Govaert L E, et al. Composites, 1990, 21(6), 513.
14 Yang K, Zhu B, Cao W W, et al. Materials Reports A: Review Papers,2015,29(7), 24(in Chinese).
杨坤, 朱波, 曹伟伟, 等. 材料导报:综述篇, 2015,29(7), 24.
15 Shi Y, Swait T, Soutis C. Composite Structures, 2012, 94, 2902.
16 Johnson G R, Holmquist T J. American Institute of Physics, DOI: 10.1063/1.46199.
17 Sharma A, Mishra R, Jain S, et al. Thin-Walled Structures, 2018,126, 193.
18 Liu W, Chen Z, Chen Z, et al. Materials and Design, 2015, 87, 421.
19 Zhou X, Li K, Chen C H, et al. Journal of Vibration and Shock, 2018, 37(22), 6(in Chinese).
周霞, 李凯, 陈成杭, 等. 振动与冲击, 2018, 37(22), 6.
20 Zhao W. Property research and design of interply hybrid composite numerical simulation research of resistance performance. Master's Thesis, Harbin Institute of Technology, China, 2012(in Chinese).
赵伟. 层间混杂复合材料体系设计与抗冲击性能数值模拟研究. 硕士学位论文, 哈尔滨工业大学, 2012.
[1] 杨松, 盛双华, 刘应开. 基于Au修饰的花状V2O5的表面增强拉曼散射研究[J]. 材料导报, 2020, 34(Z1): 34-38.
[2] 刘竹, 杨守禄, 姬宁, 罗扬, 许杰, 吴义强. 油茶果壳高值化利用研究进展[J]. 材料导报, 2020, 34(Z1): 120-127.
[3] 王启扬, 杨波. 碳酸盐基常固态复合相变材料的制备与性能研究[J]. 材料导报, 2020, 34(Z1): 137-139.
[4] 孙阔. 碳纤维复合材料滑动舱门刚度试验与仿真分析[J]. 材料导报, 2020, 34(Z1): 161-163.
[5] 于海洋, 李地红, 代函函, 高群. 混杂纤维增强应变硬化水泥基复合材料的弯曲性能研究[J]. 材料导报, 2020, 34(Z1): 229-233.
[6] 周长壮, 马琳, 崔庆贺, 梁金第. 颗粒增强铝基复合材料TLP连接综述与展望[J]. 材料导报, 2020, 34(Z1): 351-355.
[7] 张洋, 张海燕, 陈蕴博, 王大鹏, 陈林, 刘晓萍. 热处理对热压制备Al-Cu-Mg/SiCp制动耐磨复合材料组织及磨损性能的影响[J]. 材料导报, 2020, 34(Z1): 356-360.
[8] 李亚林, 孙垒, 曹柳絮, 焦孟旺, 罗伟, 邱振宇, 王畅. 汽车制动盘用铝基复合材料摩擦磨损研究进展[J]. 材料导报, 2020, 34(Z1): 361-365.
[9] 冉小杰, 周露, 黄福祥, 曾利娟. Cu/Al界面研究进展[J]. 材料导报, 2020, 34(Z1): 366-369.
[10] 秦笑, 王娟, 林高用, 郑开宏, 王海艳, 冯晓伟. 镀铜石墨/铜复合材料的组织和摩擦磨损性能[J]. 材料导报, 2020, 34(Z1): 380-384.
[11] 曹飞, 陈杰, 林泽力. 基于小波能量谱和信息熵的复合材料结构损伤诊断[J]. 材料导报, 2020, 34(Z1): 476-479.
[12] 郝新超. 基于Anderson-Darling检验的复合材料厚板层间拉伸强度性能研究及B基准值[J]. 材料导报, 2020, 34(Z1): 480-485.
[13] 陈姝敏, 吴迪, 何文浩, 陈勇. 银纳米粒子负载的石墨烯基环氧树脂复合材料的制备及性能[J]. 材料导报, 2020, 34(Z1): 503-506.
[14] 方敏, 王璐, 侯佳欣, 南晓茹, 赵彬. 丝素蛋白复合石墨烯类材料在生物医学领域中的研究进展[J]. 材料导报, 2020, 34(Z1): 511-515.
[15] 孙元平, 姚毅恒, 张淑娴, 马建新, 翁赟. 竹缠绕复合材料的线膨胀系数测试[J]. 材料导报, 2020, 34(Z1): 539-541.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed