Please wait a minute...
材料导报  2020, Vol. 34 Issue (14): 14147-14153    https://doi.org/10.11896/cldb.19060010
  金属与金属基复合材料 |
TA19双态组织钛合金线性摩擦焊接头的组织结构及演化行为
陶博浩1, 李菊2, 张彦华1
1 北京航空航天大学机械工程及自动化学院, 北京 100191
2 中航工业北京航空制造工程研究所, 北京 100024
Microstructure and Evolution Behavior of Linear Friction Welded Joints of TA19 Titanium Alloy with Bimodal Structure
TAO Bohao1, LI Ju2, ZHANG Yanhua1
1 School of Mechanical Engineering & Automation, Beihang University,Beijing 100191, China
2 AVIC Beijing Aeronautical Manufacturing Technology Research Institute, Beijing 100024, China
下载:  全 文 ( PDF ) ( 9509KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本实验研究了具有双态组织结构特征的TA19钛合金线性摩擦焊接头的组织结构,分析了等轴初生α相和片层结构β转变组织的变形行为及接头焊缝的形成机制。结果表明:线性摩擦焊接时剧烈的连续热塑性变形使得焊缝中心的TA19双态组织钛合金经历了组织粗化、变形、破碎以及完全碎化的过程,最终转变为超细晶等轴组织。从焊接接头的热影响区到焊缝中心,等轴初生α相经历了不连续的塑性变形和破碎最终完全相变为β相。片层结构β转变组织则先后经历了变形、解体并完全碎化的过程。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陶博浩
李菊
张彦华
关键词:  TA19钛合金  显微组织  热塑性变形  线性摩擦焊    
Abstract: In this paper,the microstructure of linear friction welded joints of TA19 titanium alloy with bimodal structure was studied. Moreover, the defor-mation behaviors of the equiaxed primary α phase and the lamellar β transformation structure as well as the formation mechanism of the joint were analyzed. The results show that during linear friction welding, the severe and continuous thermoplastic deformation leads to a successive changing process of the bimodal structure, from structure coarsening, deformation, disintegration to a complete fragmentation, and ultimately it turns into the refined grain equiaxed structure. From heat-affected zone of welded joint to welded center, the equiaxed primary α phase undergoes discontinuous plastic deformation, fragmentation and eventually turns into β phase completely, while the lamellar β transformation structure expe-riences deformation, disintegration and ultimately a complete fragmentation.
Key words:  TA19 titanium alloy    microstructure    thermoplastic deformation    linear friction welding
               出版日期:  2020-07-25      发布日期:  2020-07-14
ZTFLH:  TG44  
作者简介:  陶博浩,北京航空航天大学博士研究生。主要从事材料加工和焊接结构分析研究。
张彦华,博士,教授,重点研究领域为材料加工与制造技术、先进焊接技术。
引用本文:    
陶博浩, 李菊, 张彦华. TA19双态组织钛合金线性摩擦焊接头的组织结构及演化行为[J]. 材料导报, 2020, 34(14): 14147-14153.
TAO Bohao, LI Ju, ZHANG Yanhua. Microstructure and Evolution Behavior of Linear Friction Welded Joints of TA19 Titanium Alloy with Bimodal Structure. Materials Reports, 2020, 34(14): 14147-14153.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19060010  或          http://www.mater-rep.com/CN/Y2020/V34/I14/14147
1 Huang Y S, Ma J W, Feng B D. New Technology & New Process, 2012(8), 78(in Chinese).
黄艳松, 马俊文 冯保东. 新技术新工艺, 2012(8), 78.
2 Shtrikman M M. Welding International, 2010, 24(7), 563.
3 Brownell J B, Gillbanks P J, Hawkins R J, et al. U.S. patent application, 6095402, 2000.
4 Mateo A, Corzo M, Anglada M, et al. Materials Science and Technology, 2009, 25(7), 905.
5 China Aviation Materials Handbook Editorial Board. China aeronautical materials handbook, titanium alloy copper alloy, Standards Press of China, China, 2001(in Chinese).
中国航空材料手册编辑委员会. 中国航空材料手册: 钛合金铜合金, 中国标准出版社, 2001.
6 Lang B, Zhang T C, Tao J, et al. Journal of Materials Engineering, 2012(10), 39(in Chinese).
郎波, 张田仓, 陶军, 等. 材料工程, 2012(10), 39.
7 Wen D G, Ma T J, Li W Y, et al. Materials Science and Engineering A, 2014, 597, 408.
8 Wanjara P, Jahazi M. Metallurgical and Materials Transaction A, 2005,36(8), 2149.
9 Stinville J C, Bridier F, Ponsen D, et al. International Journal of Fatigue, 2014, 70, 278.
10 Ma T J, Chen T, Li W Y, et al. Materials Characterization, 2011, 62, 130.
11 Lang B, Zhang T C, Li X H, et al. Journal of Materials Science, 2012, 45, 6218.
12 Liu Y, Zhang C C, Zhang T C. Aeronautical Manufacturing Technology, 2017(22), 83(in Chinese).
刘颖, 张传臣, 张田仓. 航空制造技术, 2017(22), 83.
13 Li J, Zhang T C, Guo D L, et al. Aeronautical Manufacturing Technology, 2015(3), 68(in Chinese).
李菊, 张田仓, 郭德伦, 等. 航空制造技术, 2015(3), 68.
14 Ji Y P, Chai Z Z, Zhao D L, et al. Journal of Materials Process Technology, 2014, 214, 979.
15 Wen G D, Ma T J, Li W Y, et al. Materials and Science and Engineering A, 2014, 612, 80.
16 Zhao P K, Fu L. Materials Science and Engineering A, 2015, 621, 149.
17 Zhao P K, Fu L, Chen H Y. Journal of Alloys and Compounds, 2016, 675, 248.
18 Ji Y J, Zhang T C, Li X H, et al. Aeronautical Manufacturing Technology, 2015(11), 62(in Chinese).
季亚娟, 张田仓, 李晓红, 等. 航空制造技术, 2015(11), 62.
19 Zhang C C, Zhang T C, Ji Y J, et al. Transactions of Nonferrous Metals Society of China, 2013, 23, 3540.
20 Zhang C C, Huang J H, Zhang T C, et al. Transactions of The China Welding Institution, 2012, 33(4), 97(in Chinese).
张传臣, 黄继华, 张田仓, 等. 焊接学报, 2012, 33(4), 97.
21 Ma T J, Zhang B, Li W Y, et al. Science and Technology of Welding and Jointing, 2012, 17(1), 9.
22 He J C, Zhang T C, Ji Y J, et al. Transactions of Materials and Heat Treatment, 2016, 37(1), 185(in Chinese).
贺建超, 张田仓, 季亚娟, 等. 材料热处理学报, 2016, 37(1), 185.
23 Zhang J, Zhang T C, Li J. Hot Working Technology, 2017, 46(17), 59(in Chinese).
张晶, 张田仓, 李菊. 热加工工艺, 2017, 46(17), 59.
24 Guo Y N, Jung T, Chiu Y L, et al. Materials Science and Engineering A, 2013, 562, 17.
25 Leyens C, Peters M. Titanium and titanium alloys, Chemical Industry Press, China, 2005(in Chinese).
Leyens C, Peters M. 钛与钛合金, 化学工业出版社, 2005.
26 Zhao Y Q, Chen Y N, Zhang X M, et al. Phase transformation and heat treatment of titanium alloys, Central South University Press, China, 2012(in Chinese).
赵永庆, 陈永楠, 张学敏, 等. 钛合金相变及热处理, 中南大学出版社, 2012.
27 Stefansson N, Semiatin S L. Metallurgical and Materials Transactions A, 2003, 34A, 691.
[1] 江雯, 蒋璐瑶, 黄伟九, 郭非, 董海澎. 退火处理对搅拌摩擦加工LZ91双相镁锂合金微观组织及力学性能的影响[J]. 材料导报, 2020, 34(Z1): 307-311.
[2] 谢兴飞, 曲敬龙, 杜金辉. GH4720Li镍基合金混晶组织对高温持久性能的影响[J]. 材料导报, 2020, 34(Z1): 375-379.
[3] 谢锐, 吕铮, 卢晨阳, 王晴, 徐世海, 刘春明. 热等静压温度对14Cr-ODS钢显微组织及力学性能的影响[J]. 材料导报, 2020, 34(8): 8141-8148.
[4] 周宇, 钱丽华, 刘天宇, 张泉, 吕知清. 冷轧板条马氏体组织与力学性能研究[J]. 材料导报, 2020, 34(8): 8154-8158.
[5] 王婷玥, 邢书明, 敖晓辉, 王营. 压力对挤压铸造E级钢低温冲击韧性的影响[J]. 材料导报, 2020, 34(6): 6138-6143.
[6] 陈国庆, 张戈, 尹乾兴, 张秉刚, 冯吉才. TiAl合金焊接裂纹控制研究进展[J]. 材料导报, 2020, 34(5): 5115-5119.
[7] 郭丽丽, 苑菁茹, 汪建强, 李永兵. ZK60镁合金中空型材挤压成形的有限元模拟及组织和性能[J]. 材料导报, 2020, 34(2): 2072-2076.
[8] 谭金花, 孙荣禄, 牛伟, 刘亚楠, 郝文俊. 激光扫描速度对TC4合金表面激光熔覆复合涂层组织及性能的影响[J]. 材料导报, 2020, 34(12): 12094-12100.
[9] 张雪飞, 白景元, 管仁国. 半固态搅拌参数对A356-10%B4Cp复合材料显微组织的影响[J]. 材料导报, 2020, 34(10): 10103-10107.
[10] 费文潘, 薛松柏, 陈宇豪, 吴杰, 王博, 林中强. Sr、La复合添加对SAl 4047焊丝氢含量及焊接接头力学性能的影响[J]. 材料导报, 2020, 34(10): 10150-10156.
[11] 洪起虎, 燕绍九, 陈翔, 李秀辉, 舒小勇, 吴廷光. GO添加量对RGO/Cu复合材料组织与性能的影响[J]. 材料导报, 2019, 33(z1): 62-66.
[12] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[13] 王川, 李德富. 冷轧变形量对5A02铝合金管材组织和性能的影响[J]. 材料导报, 2019, 33(8): 1361-1366.
[14] 王应武, 左孝青, 冉松江, 孔德昊. TiB2含量及T6热处理对原位TiB2/ZL111复合材料显微组织和硬度的影响[J]. 材料导报, 2019, 33(8): 1371-1375.
[15] 温丽, 薛松柏, 马超力, 龙伟民, 钟素娟. 钎焊温度对纳米银焊膏真空钎焊Ni200合金接头组织与性能的影响[J]. 材料导报, 2019, 33(3): 386-389.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed