Please wait a minute...
材料导报  2019, Vol. 33 Issue (z1): 453-456    
  高分子与聚合物基复合材料 |
聚乙烯基石墨烯复合多孔球形材料的制备及性能表征
周春波, 张有智, 张岳, 王煊军
火箭军工程大学,西安 710025
Preparation and Properties of Polyethylene Based Porous Spherical Materials Composites Filled with Graphene
ZHOU Chunbo, ZHANG Youzhi, ZHANG Yue, WANG Xuanjun
Rocket Force University of Engineering, Xi’an 710025
下载:  全 文 ( PDF ) ( 2103KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以聚乙烯高分子添加不同含量石墨烯双螺杆挤出制备的复合材料为基材,利用单螺杆精密线材生产线制备了基于熔融沉积成型(FDM)的3D打印样条。通过XRD和SEM对复合材料力学性能、导电性能、导热性能进行了测试表征,得到了样品的屈服应力点以及不同石墨烯含量下样品的导电、导热规律。结果表明,用该方法制备的纳米复合材料粒径分布均匀,其3D打印线材可用于聚乙烯基石墨烯复合多孔球形阻隔防爆材料3D打印。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周春波
张有智
张岳
王煊军
关键词:  熔融共混  高密度聚乙烯  石墨烯纳米复合材料  3D打印    
Abstract: The 3D printing wire based on fused deposition modeling (FDM) were successfully prepared by single-screw extruder, whose raw materials were made by using polyethylene based composites filled with different graphene content by twin-screw extruder. The mechanical properties, electrical conductivity and thermal conductivity of the composites were characterized by XRD and SEM. The yield stress point and the conductivity and thermal conductivity of the composites with different graphene content were obtained. The results show that the particle size distribution of the nanocomposites prepared by this method is uniform, and the wire of polyethylene-based composites filled with graphene can be used for 3D prin-ting of porous spherical barrier and explosion-proof materials.
Key words:  melt-blending    high density polyethylene    graphene nanocomposites    3D printing
               出版日期:  2019-05-25      发布日期:  2019-07-05
ZTFLH:  TQ317  
  X932  
  TB383  
作者简介:  周春波,2018年于火箭军工程大学取得硕士学位,研究方向为特种化学材料与安全。王煊军,教授,1998年获得南京理工大学(NUST)含能材料专业博士学位。2001年成为火箭军工程大学教授,研究方向为特种能源理论与技术。wangxj503@sina.com
引用本文:    
周春波, 张有智, 张岳, 王煊军. 聚乙烯基石墨烯复合多孔球形材料的制备及性能表征[J]. 材料导报, 2019, 33(z1): 453-456.
ZHOU Chunbo, ZHANG Youzhi, ZHANG Yue, WANG Xuanjun. Preparation and Properties of Polyethylene Based Porous Spherical Materials Composites Filled with Graphene. Materials Reports, 2019, 33(z1): 453-456.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2019/V33/Iz1/453
1 周醒, 夏元梦, 蔺海兰, 等. 复合材料学报,2017,34(4),699.
2 郝艳萍. 氧化石墨烯/聚合物复合材料的制备与性能. 硕士学位论文, 东华大学,2017.
3 赵晓凤. 石墨烯/PET复合材料的制备及性能研究. 硕士学位论文, 浙江理工大学,2017.
4 于方波. 石墨烯与聚烯烃的复合方法及其对聚烯烃改性效果的研究. 硕士学位论文, 华侨大学,2016.
5 邓艳丽. 苯乙烯系聚合物导电复合材料的制备与性能研究. 硕士学位论文, 安徽大学,2017.
6 张浪浪, 刘祥萱, 王煊军. 火炸药学报,2017,40(5),88.
7 张有智, 李正莉, 王煊军, 等. 化学推进剂与高分子材料,2008,6(3),20.
8 周春波, 王煊军, 慕晓刚. 化学推进剂与高分子材料,2017,15(5),86.
9 杨真理, 鲁长波, 周友杰, 等. 安全与环境工程,2016,23(2),130.
10 邢志祥, 张成燕. 工业安全与环保,2013,39(12),30.
11 高建村, 庞磊, 孟倩倩. 中国安全科学学报,2013,23(8),43.
12 邓祥义, 胡海平. 化工进展,2002,21(10),261.
13 喻慧文, 徐百平, 庄文柳, 等. 工程塑料应用,2017,45(1),7.
14 耿孝正. 中国塑料,2005(2),31.
15 吴京, 殷敬华. 塑料,2003,32(1),42.
16 肖建华. 塑料工业,2016,44(6),46.
17 Cheng S, Chen X, Huan Y G, et al. Macromolecules,2011,45(2),993.
18 周友杰, 鲁长波, 熊春华, 等. 化学推进剂与高分子材料,2016,14(2),46.
19 邢志祥, 杜贞, 欧红香, 等. 安全与环境工程,2015,22(2),112.
20 Lei Z, Xie L F, Han Z W. Fire Science & Technology,2014,50(4),477.
[1] 安晓龙, 吕云卓, 覃作祥, 陆兴. 同轴送粉激光3D打印光粉耦合作用以及熔池气液界面追踪数值模拟的研究进展[J]. 材料导报, 2019, 33(1): 167-174.
[2] 朱彬荣, 潘金龙, 周震鑫, 张洋. 3D打印技术应用于大尺度建筑的研究进展[J]. 材料导报, 2018, 32(23): 4150-4159.
[3] 安晓龙, 吕云卓, 覃作祥, 陆兴. 同轴送粉金属激光3D打印熔池流动、成分分布以及组织生长数值模拟的研究进展[J]. 材料导报, 2018, 32(21): 3743-3753.
[4] 杨建明, 汤阳, 顾海, 刘永加, 黄大志, 陈劲松. 3D打印制备多孔结构的研究与应用现状[J]. 材料导报, 2018, 32(15): 2672-2683.
[5] 陈自鹏, 石少卿, 罗伟铭, 孙建虎, 范兰心. 高密度聚乙烯材料在大变形条件下的数值模拟研究*[J]. 《材料导报》期刊社, 2017, 31(20): 135-139.
[6] 魏明炜, 陈岁元, 郭快快, 梁京, 刘常升. EIGA法制备激光3D打印用TA15钛合金粉末*[J]. 《材料导报》期刊社, 2017, 31(12): 64-67.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed