Please wait a minute...
材料导报  2019, Vol. 33 Issue (z1): 33-36    
  无机非金属及其复合材料 |
不同浓度Ag掺杂ZnS的电子结构及光学性质的第一性原理研究
王骏齐1, 张衍敏1, 陈天弟1, 王恒1, 田遴博1, 冯超2,3, 夏金宝2, 张飒飒1
1 山东大学信息科学与工程学院,济南 250100
2 山东大学晶体材料国家重点实验室,济南 250100
3 山东大学光学高等研究中心,青岛 266237
Study on the Electronic Structure and Optical Properties of Different Concentrations of Ag-doped ZnS Using First-principles
WANG Junqi1, ZHANG Yanmin1, CHEN Tiandi1, WANG Heng1, TIAN Linbo1, FENG Chao2,3, XIA Jinbao2, ZHANG Sasa1
1 School of Information Science and Engineering, Shandong University, Jinan 250100
2 State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100
3 Advanced Research Center for Optics, Shandong University, Qingdao 266237
下载:  全 文 ( PDF ) ( 4196KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 具有优良热红外透明性的ZnS是一种重要的宽禁带半导体材料,在电致发光以及荧光效应方面有很大的潜力,因此被广泛用于发光器件和光催化等领域。对于ZnS进行适当的掺杂能有效改变其发光和吸收性能,从而让其作为发光材料拥有更大的应用价值。本工作应用基于密度泛函理论的第一性原理,计算并对比分析了纯净ZnS以及Ag掺杂浓度分别为3.125%、9.375%、25%、50%的ZnS的晶体学结构、电子性质以及光学性质。研究结果表明,更高的掺杂浓度能有效降低禁带宽度,并增强ZnS在红外波段的光学吸收与反射。本研究为制备Ag掺杂ZnS半导体提供了理论依据,针对不同需求调节掺杂浓度以制备特定性能的ZnS晶体。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王骏齐
张衍敏
陈天弟
王恒
田遴博
冯超
夏金宝
张飒飒
关键词:  第一性原理  密度泛函理论  掺杂  光学性质    
Abstract: ZnS, which has excellent thermal infrared transparency, is an important semiconductor material with wide band gap. It has great potential in electroluminescence and fluorescence effects, and is therefore widely used in the fields of light-emitting devices and photocatalysis. Appropriate doping of ZnS can effectively change its luminescence and absorption properties, which makes it more widely used as a luminescent mate-rial. Based on the first principles and the density functional theory, the crystallographic structure, electronic properties and optical properties of ZnS with Ag doping concentrations of 0%, 3.125%, 9.375%, 25% and 50% respectively, were calculated and compared. The results show that higher doping concentration can effectively reduce the band gap and enhance the absorption and reflection of ZnS in the infrared band. This study provides a theoretical basis for the preparation of Ag-doped ZnS semiconductors.
Key words:  first principles    density functional theory    doping    optical properties
               出版日期:  2019-05-25      发布日期:  2019-07-05
ZTFLH:  O471.4  
基金资助: 国家重点基础研究发展计划(973计划)(2015CB921003);山东省自然科学基金博士基金(ZR2018BF030);博士后国际交流计划派出项目(20180065)
作者简介:  王骏齐,山东大学硕士生,光学工程专业。主要从事材料光学相关性质的基于第一性原理理论的研究工作。张飒飒,山东大学教授,博士研究生导师。1986年毕业于山东大学光学系,1991年6月获得硕士学位,2008年6月获中美联合培养博士学位。sasazhang@sdu.edu.cn
引用本文:    
王骏齐, 张衍敏, 陈天弟, 王恒, 田遴博, 冯超, 夏金宝, 张飒飒. 不同浓度Ag掺杂ZnS的电子结构及光学性质的第一性原理研究[J]. 材料导报, 2019, 33(z1): 33-36.
WANG Junqi, ZHANG Yanmin, CHEN Tiandi, WANG Heng, TIAN Linbo, FENG Chao, XIA Jinbao, ZHANG Sasa. Study on the Electronic Structure and Optical Properties of Different Concentrations of Ag-doped ZnS Using First-principles. Materials Reports, 2019, 33(z1): 33-36.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2019/V33/Iz1/33
1 Dong M, Zhou P, Jiang C, et al. Chemical Physics Letters,2017,668,1.
2 何开华, 余飞, 姬广富, 等. 高压物理学报,2006(1),56.
3 刘远全. 原子与分子物理学报,2017,34(5),969.
4 万淼, 郑广, 何开华, 等. 原子与分子物理学报,2009,26(1),157.
5 王经纬, 边继明, 孙景昌, 等.物理学报,2008,57(8),5212.
6 许镇潮, 侯清玉. 物理学报,2015,64(15),157101.
7 黄育红,介万奇,徐凌燕,等.人工晶体学报,2013,42(6),1046.
8 杜鸿延, 魏志鹏, 楚学影, 等. 材料导报:综述篇,2013,27(7),20.
9 李建华, 崔元顺, 曾祥华, 等. 物理学报,2013,62(7),77102.
10 李建华, 曾祥华, 季正华, 等. 物理学报,2011,60(5),57101.
11 熊远鹏, 吴波, 王敏, 等. 功能材料,2014,45(1),1038.
12 Clark S J, Segall M D, Pickard C J, et al. Zeitschrift für Kristallographie-Crystalline Materials,2005,220(5-6),567.
13 Ves S, Schwarz U, Christensen N E, et al.Physical Review B,1990,42(14),9113.
14 Lee S G, Chang K J. Physical Review B,1995,52(3),1918.
15 Cui E H, Zhao Y Z, Yan C,et al.Chinese Physics B,2008,17(10),3867.
16 Khenata R, Bouhemadou A, Sahnoun M, et al.Computational Materials Science,2006,38(1),29.
17 Geng B Y, Liu X W, Du Q B, et al.Applied Physics Letters,2006,88(16),163104.
[1] 韩应强, 孙爱民, 潘晓光, 张伟, 赵锡倩. Y3+掺杂对Ni-Cu-Zn铁氧体纳米颗粒结构和磁性能的影响[J]. 材料导报, 2019, 33(z1): 343-347.
[2] 潘留仙, 夏庆林. 新型二维半导体材料砷烯的研究进展[J]. 材料导报, 2019, 33(z1): 22-27.
[3] 潘云, 吴承仁, 陈绍维, 伍小波. 氧还原催化材料与催化机理及活性位点的研究进展[J]. 材料导报, 2019, 33(z1): 41-44.
[4] 古丽妮尕尔·阿卜来提, 麦合木提·麦麦提, 阿比迪古丽·萨拉木, 买买提热夏提·买买提, 吴赵锋, 孙言飞. Ni 掺杂对BiFeO3薄膜晶体结构和磁性的影响[J]. 材料导报, 2019, 33(z1): 108-111.
[5] 赵笑昆, 李博研, 张增光. 磁控溅射沉积制备Al掺杂ZnO薄膜的棒状晶粒生长[J]. 材料导报, 2019, 33(z1): 112-115.
[6] 陈永佳, 刘建科. SiO2掺杂浓度对ZnO压敏陶瓷结构与性能的影响[J]. 材料导报, 2019, 33(z1): 161-164.
[7] 赵曦, 于振涛, 郑继明, 余森, 王昌. 合金元素影响镁合金弹性性能的第一性原理计算研究[J]. 材料导报, 2019, 33(z1): 293-296.
[8] 侯珊, 刘向春. 新型光催化剂钨酸锌的制备及性能改性研究进展[J]. 材料导报, 2019, 33(9): 1541-1549.
[9] 卢百平, 崔春娟, 田露露, 问亚岗, 王佩. 布里奇曼定向凝固Ni-12%Si过共晶的弹性模量与断裂韧性[J]. 材料导报, 2019, 33(8): 1383-1388.
[10] 王宇鲲, 魏永刚, 彭博, 李博, 周世伟. 镁质贫镍红土矿热分解理论计算与实验研究[J]. 材料导报, 2019, 33(8): 1406-1411.
[11] 王枭, 于晓华, 李晓宇, 刘成, 钟毅, 詹肇麟, 邓久帅. 纯Fe表面机械研磨处理对Ti原子扩散特性影响的第一性原理计算及实验验证[J]. 材料导报, 2019, 33(6): 1017-1021.
[12] 张嘉羲, 袁欢, 刘禹彤, 陈雨, 徐明. Fe掺杂的Ag-ZnO纳米复合材料的合成及光催化性能[J]. 材料导报, 2019, 33(6): 941-946.
[13] 张旭昀, 王文泉, 郭斌, 郑冰洁, 吴戆, 王勇. CaCO3在Fe(100)表面成垢机制的第一性原理研究[J]. 材料导报, 2019, 33(6): 965-969.
[14] 阿比迪古丽·萨拉木, 吾尔尼沙·依明尼亚孜, 买买提热夏提·买买提, 吴钊峰. 掺杂对BiFeO3薄膜电、磁特性影响综述[J]. 材料导报, 2019, 33(5): 791-796.
[15] 董海宽, 史力斌. 4d过渡金属掺杂石墨烯对HCN吸附行为的第一性原理研究[J]. 材料导报, 2019, 33(4): 595-604.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed