Please wait a minute...
材料导报  2019, Vol. 33 Issue (Z2): 410-414    
  金属与金属基复合材料 |
铝-氟聚物含能亚稳态复合材料研究进展
杭思羽, 徐闻婷, 韩志伟, 王伯良
南京理工大学化工学院,南京 210094
Research Progress on Reaction Mechanism of Aluminum-Fluoropolymer EnergeticMetastable Intermixed Composites
HANG Siyu, XU Wenting, HAN Zhiwei, WANG Boliang
School of Chemical Engineering,Nanjing University of Science and Technology,Nanjing 210094
下载:  全 文 ( PDF ) ( 1948KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 21世纪早期,凭借优异的放热特性,纳米金属粉与氧化物、碘化物、氟化物等氧化剂混合制备得到的具有精细结构的双组分或多组分含能亚稳态复合材料逐渐步入人们的视野,其被广泛应用于炸药、推进剂、反应碎片等军事领域。纳米铝粉具有高反应活性和出色的燃烧性能,是制备含能亚稳态复合材料的优先选择。但同时,纳米铝粉也因其高比表面积,易被氧化而形成致密的表面钝化层,这一氧化层的存在是阻碍其性能充分发挥的“屏障”。而将氟聚物引入纳米铝粉体系恰恰可以利用这层氧化层,来开启含能亚稳态复合材料研究的新大门。
铝-氟聚物含能亚稳态复合材料的放热和燃烧性能是评价其实际应用可行性的关键技术指标,影响这些性能的主要宏观因素包括制备方法及过程中用的配比和其他改良剂的加入等。目前新兴的几种方法有:原位气相沉积聚合法,利用原位聚合和气相沉积原理可以得到包覆均匀的核壳结构复合材料,但是此方法对过程精度的控制要求高,且存在一定的安全问题;静电喷雾法,基于静电力效应同样可以得到包覆良好的核壳结构粒子,但此方法制备的材料产量极小,工业放大可行性低;机械力活化法,操作简单,单批处理量大,但此方法涉及工艺参数众多,目标材料的最终性能难以定量化;3D打印法,已有工业化实例,且应用广泛,但是其成本昂贵。未来,通过对比分析不同制备方法得到的复合材料的性能差异,可以确定适当的方法来制备满足特定需求的含能亚稳态复合材料。
从微观角度来看,预先点火反应的存在可以推动熔融扩散过程,影响含能材料的最终性能,故通过活化铝表面或者改变氟聚物性质可以促进预先点火反应。未来,掌握铝-氟聚物体系完整的反应机理和氟聚物在各个反应阶段起到的作用,可对新材料的合成和应用产生重大意义。
本文介绍了几种新兴铝-氟聚物含能材料制备方法的原理及应用范围,同时从氟聚物改性纳米铝粉制备出发,分析了预先点火反应对熔融扩散过程乃至整体性能的影响,并为后续的研究和应用提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杭思羽
徐闻婷
韩志伟
王伯良
关键词:  纳米铝粉  氟聚物  熔融扩散机理  预先点火反应    
Abstract: In the early 21st century, for the excellent exothermic properties, the two-component or multi-component energetic metastable composites with fine structures, prepared by mixing nano-metal powder with oxides, iodides, fluorides and other oxidants, gradually step into people’s vision. They are widely used in military fields such as explosives, propellants, and reactive debris. Nano aluminum powder has a high reactivity and excellent combustion performance, and is a preferred choice for the preparation of energy-containing metastable composite materials. However, nano-aluminum powder is also easily oxidized to form a dense surface passivation layer due to its high specific surface area and this oxide layer is a “barrier” that weakens its combustion performance. While the introduction of fluoropolymer into the nano-aluminum powder system could precisely utilize this oxide layer and open a new door for the energetic metastable composite study.
The exothermic and combustion properties of aluminum-fluoropolymer containing metastable composites are key technical indicators for evaluating their practical application potentials, and the main macro factors affecting the two properties include the preparation method and the mass ratio and other additions used in the processes. At present, several new methods for aluminum-fluoropolymer containing metastable composites preparation are researched: In-situ vapor deposition polymerization method, using in-situ polymerization and vapor deposition processes, could prepare uniformly coated core-shell composites, but this method has high control requirements on process accuracy and lays some safety problems. Electrostatic spray method could also obtain well-coated core-shell particles based on the electrostatic force effect. However, the yield of materials prepared by this method is very small and has a low industrial amplification feasibility. Mechanical force activation method is simple in operation and large in single batch processing. However, this method involves plenty of process parameters, and the performance of the target materials is difficult to quantify. 3D printing method has been industrialized and widely used, but the method costs a lot. In the future, by comparing the perfor-mance differences of composites obtained by different preparation methods, we can determine the appropriate way to prepare energetic metastable composites that meet the specific needs.
On the other hand, from the microscopic view, the presence of a pre-ignition reaction could promote the melt diffusion process and affect the properties of energetic materials. So, the pre-ignition reaction could be promoted by activating the aluminum surface or changing the properties of the fluoropolymer. In the future, mastering the reaction mechanism of the aluminum-fluoropolymer system and knowing the role of the fluoropolymer in each reaction stage could be of great significance for the synthesis and application of new materials.
This paper introduces the mechanism and application ranges of several preparation methods for emerging aluminum-fluoropolymer energetic materials. At the same time, from the preparation of fluoropolymer modified nano aluminum powder, the effect caused by pre-ignition reaction for the melt diffusion process and the material performance is analyzed, and this provides a reference for further researches and applications in other energetic material.
Key words:  nano aluminum    fluoropolymer    ignition combustion mechanism    preignition reaction mechanism
               出版日期:  2019-11-25      发布日期:  2019-11-25
ZTFLH:  TJ55  
  O64  
基金资助: 国家自然科学基金(11702142)
通讯作者:  boliangwang@163.com   
作者简介:  杭思羽,2017年6月毕业于常州大学,获得工学学士学位。现为南京理工大学化工学院硕士研究生,在王伯良教授的指导下进行研究。目前主要研究领域为铝-氟聚物复合材料的制备及性能研究。
王伯良,南京理工大学化工学院教授、博士、硕士生导师。毕业于德国亚琛工业大学安全技术及工程专业,获得博士学位。现为中国力学学会“激波与激波管技术”专业委员会委员。
引用本文:    
杭思羽, 徐闻婷, 韩志伟, 王伯良. 铝-氟聚物含能亚稳态复合材料研究进展[J]. 材料导报, 2019, 33(Z2): 410-414.
HANG Siyu, XU Wenting, HAN Zhiwei, WANG Boliang. Research Progress on Reaction Mechanism of Aluminum-Fluoropolymer EnergeticMetastable Intermixed Composites. Materials Reports, 2019, 33(Z2): 410-414.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2019/V33/IZ2/410
1 Sundaram D, Yang V, Yetter R A. Progress in Energy and Combustion Science,2017,61,293.
2 Séverac F, Alphonse P, Estève A, et al. Advanced Functional Materials,2012,22(2),323.
3 Kappagantula K S, Farley C, Pantoya M L, et al. The Journal of Physical Chemistry C,2012,116(46),24469.
4 Valluri S K, Schoenitz M, Dreizin E L. Journal of Materials Science,2017,52(12),7452.
5 Ao W, Liu X, Rezaiguia H, et al. Acta Astronautica,2017,136,219.
6 Muraleedharan M G, Unnikrishnan U, Henry A, et al. Combustion and Flame,2019,201,160.
7 Kostoglou N, Emre Gunduz I, Isik T, et al. Materials & Design,2018,144,222.
8 Valluri S K, Schoenitz M, Dreizin E. Defence Technology,2019,15(1),1.
9 Wang H, Rehwoldt M, Kline D J, et al. Combustion and Flame,2019,201,181.
10 Watson K W, Pantoya M L, Levitas V I. Combustion and Flame,2008,155(4),619.
11 Li X, Yang H, Li Y. Thermochimica Acta,2015,621,68.
12 Sippel T R, Son S F, Groven L J. Propellants, Explosives, Pyrotechnics,2013,38(2),286.
13 陶俊,王晓峰,韩仲熙,等.材料导报:研究篇,2018,32(3),894.
14 赵乃勤,马杰,师春生,等.金属热处理,2009,34(7),100.
15 孟鑫.原位合成CNTs增强Al-Cu基复合材料及其力学性能.硕士学位论文,天津大学,2014.
16 王军.2016年版中国工程物理研究院科技年报.绵阳,2016.
17 Crouse C A, Pierce C J, Spowart J E. Combustion and Flame,2012,159(10),3199.
18 He W, Liu P, Gong F, et al. ACS Applied Materials & Interfaces,2018,10(38),32849.
19 Zhou X, Torabi M, Lu J, et al. ACS Applied Materials & Interfaces,2014,6(5),3058.
20 Mohammad M, Khan M B, Sherazi T A, et al. Journal of Nanomaterials,2013,2013(81),1.
21 Almería B, Deng W, Fahmy T M, et al. Journal of Colloid and Interface Science,2010,343(1),125.
22 Wang H, Jian G, Yan S, et al. ACS Applied Materials & Interfaces,2013,5(15),6797.
23 Enayati M, Chang M, Bragman F, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2011,382(1-3),154.
24 DeLisio J B, Hu X, Wu T, et al. The Journal of Physical Chemistry B,2016,120(24),5534.
25 Yang H, Huang C, Chen H. Journal of Thermal Analysis and Calorimetry,2017,127(3),2293.
26 李翔宇.含氟纳米铝热剂的制备及反应特性的研究.博士学位论文,南京理工大学,2016.
27 Lyu J, Chen S, He W, et al. Chemical Engineering Journal,2019,368,129.
28 Mubyana K, Koppes R A, Lee K L, et al. Journal of Biomedical Mate-rials Research Part A,2016,104(11),2794.
29 Suryanarayana C. Progress in Materials Science,2001,46(1-2),1.
30 Rubio M A, Gunduz I E, Groven L J, et al. Combustion and Flame,2017,176,162.
31 Kwon H, Kawasaki A, Leparoux M. Journal of Composite Materials,2017,51(25),3557.
32 Sterletskii A N, Dolgoborodov A Y, Kolbanev I V, et al. Colloid Journal,2009,71(6),852.
33 McCollum J, Pantoya M L, Iacono S T. ACS Applied Materials & Interfaces,2015,7(33),18742.
34 Dolgoborodov A Y. Combustion, Explosion, and Shock Waves,2015,51(1),86.
35 Gogulya M F, Makhov M N, Brazhnikov M A, et al. In: 13th Symposium (International) on Detonation. Norfolk,2006.
36 Dolgoborodov A Y, Makhov M N, Kolbanev I V, et al. Journal of Experimental and Theoretical Physics Letters,2005,81(7),311.
37 Burmeister C F, Kwade A. Chemical Society Reviews,2013,42(18),7660.
38 Santhanam P R, Dreizin E L. Powder Technology,2012,221,403.
39 Campbell T A, Ivanova O S. Nano Today,2013,8(2),119.
40 朱延果,李志强,张荻.材料导报,2008(4),93.
41 周昕瞳,刘振星,刘昌俊.化工进展,2019,38(1),516.
42 Rengier F, Mehndiratta A, Von Tengg-Kobligk H, et al. International Journal of Computer Assisted Radiology and Surgery,2010,5(4),335.
43 张洪林,刘宝民,马新安,等.含能材料,2016,24(5),491.
44 McCollum J, Morey A M, Iacono S T. Materials & Design,2017,134,64.
45 Wang H, DeLisio J B, Holdren S, et al. Advanced Engineering Materials,2018,20(2),1700547.
46 Slocik J M, McKenzie R, Dennis P B, et al. Nature Communications,2017,8,15156.
47 Murray A K, Novotny W A, Fleck T J, et al. Additive Manufacturing,2018,22,69.
48 Horn J M, Lightstone J, Carney J, et al. In: AIP Conference Procee-dings. Boston,2012,pp.607.
49 Ruz-Nuglo F D, Groven L J. Advanced Engineering Materials,2018,20(2),1700390.
50 Wang X, Jiang M, Zhou Z, et al. Composites Part B: Engineering,2017,110,442.
51 Gebler M, Uiterkamp A J M S, Visser C. Energy Policy,2014,74,158.
52 Padhye R, Smith D K, Korzeniewski C, et al. Applied Surface Science,2017,402,225.
53 Kim S, Lim J, Lee S, et al. Combustion and Flame,2018,198,24.
54 刘洋,焦清介,闫石,等.含能材料,2018,26(8),664.
55 Levitas V I, Pantoya M L, Dean S. Combustion and Flame,2014,161(6),1668.
56 Gesner J, Pantoya M L, Levitas V I. Combustion and Flame,2012,159(11),3448.
57 Nie H, Schoenitz M, Dreizin E L. Journal of Thermal Analysis and Calorimetry,2016,125(1),129.
58 Mulamba O, Pantoya M L. Applied Surface Science,2014,315,90.
59 Padhye R, Aquino A J A, Tunega D, et al. ACS Applied Materials & Interfaces,2017,9(28),24290.
60 Osborne D T, Pantoya M L. Combustion Science and Technology,2007,179(8),1467.
61 Pantoya M L, Dean S W. Thermochimica Acta,2009,493(1-2),109.
62 Losada M, Chaudhuri S. The Journal of Chemical Physics,2010,133(13),134305.
63 McCollum J, Pantoya M L, Iacono S T. Journal of Fluorine Chemistry,2015,180,265.
64 McCollum J. Enhancing aluminum reactivity by exploiting surface chemistry and mechanical properties. Ph.D. Thesis, Texas Tech University, USA,2015.
65 Padhye R, Aquino A J, Tunega D, et al. ACS Applied Materials & Interfaces,2016,8(22),13926.
66 Levitas V I, McCollum J, Pantoya M L, et al. Combustion and Flame,2016,170,30.
67 McCollum J, Pantoya M L, Tamura N. Acta Materialia,2016,103,495.
68 郭连贵,宋武林,谢长生,等.推进技术,2012,33(3),478.
69 Hobosyan M A, Kirakosyan K G, Kharatyan S L, et al. Journal of Thermal Analysis and Calorimetry,2015,119(1),245.
70 Lee I, Reed R R, Brady V L, et al. Journal of Thermal Analysis,1997,49(3),1699.
71 DeLuca L T. Defence Technology,2018,14(5),357.
[1] 任秀秀, 赵省向, 韩仲熙, 邢晓玲. 纳米复合含能材料的制备方法、复合体系及其性能的研究进展[J]. 材料导报, 2019, 33(23): 3939-3948.
[2] 杨雄, 黄亚峰, 王晓峰. NTO在混合炸药中的应用及其酸性问题的研究进展[J]. 材料导报, 2019, 33(Z2): 627-629.
[3] 姚旭, 张光友, 刘博, 谢拯, 王煊军. 基于纳米金生长比色检测水体中的肼[J]. 材料导报, 2019, 33(z1): 310-313.
[4] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[5] 陶俊, 王晓峰, 韩仲熙, 冯博, 南海, 谢中元, 黄亚峰. 铝粉/聚四氟乙烯机械活化含能材料的制备及其微观性能研究[J]. 材料导报, 2018, 32(6): 894-898.
[6] 刘威,陈厚和. 一维含能金属有机框架的合成与性能研究[J]. 《材料导报》期刊社, 2018, 32(2): 223-227.
[7] 刘建国, 安振涛, 张倩, 杜仕国, 姚凯, 王金. 硝酸羟胺的热稳定性评估及热分解机理研究*[J]. 《材料导报》期刊社, 2017, 31(4): 145-152.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] WU Tao, MAO Lili, WANG Haizeng. Preparation and Defluoridation Performance of Mg/Fe-LDHO/PES Membranous Adsorbent[J]. Materials Reports, 2017, 31(14): 26 -30 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed