Please wait a minute...
材料导报  2019, Vol. 33 Issue (Z2): 360-364    
  金属与金属基复合材料 |
新型功率模块封装中纳米银低温烧结技术的研究进展
杨金龙, 董长城, 骆健
国电南瑞科技股份有限公司,南京 211106
Development of Low-temperature Sintered Nanoscale Silver for New PowerDevice Packaging
YANG Jinlong, DONG Changcheng, LUO Jian
NARI Technology Co. Ltd., Nanjing 211106
下载:  全 文 ( PDF ) ( 2711KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 功率器件作为电能变换的核心,在能源的产生、传输以及高能效利用等环节均发挥着重要作用。新一代功率器件向高功率密度、高结温方向的发展对功率模块的封装技术提出了越来越高的要求。
然而,传统模块封装中所使用的钎料由于熔点、可焊性、性价比、环境影响等方面的因素,已经无法满足大功率模块更高工作温度环境、更高可靠性的需求。以纳米银低温烧结为代表的封装连接技术由于具有较高的耐热温度和较好的导热导电性能,成为近几年功率模块封装连接领域的研究热点。已有研究结果表明,纳米银低温烧结过程中的烧结温度、烧结压力、烧结气氛中氧含量等工艺参数的精确控制是形成可靠连接的关键。同时,为了进一步推动纳米银低温烧结技术在功率模块封装中的应用,研究者们开发了纳米银无压烧结技术、纳米/微米银颗粒混合烧结技术以及可以满足低温快速烧结的辅助烧结方法(包括激光烧结、电流辅助烧结、放电等离子烧结、超声波辅助烧结等),使得纳米银低温烧结技术在封装性能上得到很大提升。
本文对纳米银焊膏低温烧结技术的研究现状进行了综述,归纳了纳米银低温烧结的机理,分析了纳米银烧结的不同工艺参数对封装性能的影响,最后对纳米银低温烧结技术的发展趋势及研究前景进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨金龙
董长城
骆健
关键词:  纳米银  低温烧结  封装  力学性能    
Abstract: As the centre of power conversion, power devices play an important role in the generation, transmission and energy-efficient utilization of energy. The development of new generation power devices in the direction of high power density and high junction temperature has placed increasing demands on the packaging technology of power modules.
Nevertheless, the limitations of the melting point, solderability, cost-effective, and environmental impacts of traditional solder make it difficult to meet the demands of higher operating temperature and higher reliability for the high power module. The packaging technology represented by low-temperature sintering of nanoscale silver has become a research highlight in the field of power module packaging in recent years, thanks to its high heat resistance temperature, and good thermal and electrical conductivity. The research results show that the precise control of the process parameters such as sintering temperature, sintering pressure and oxygen content in the sintering process of nanoscale silver is the key to form a reliable connection. At the same time, in order to further promote the application of low-temperature sintering technology of nanoscale silver in power module packaging, researchers have developed pressureless sintering technology of nanoscale silver, nano/microscale silver particle mixed sintering technology, and auxiliary sintering methods that can satisfy low-temperature rapid sintering (including laser sintering, current-assisted sintering, spark plasma sintering, ultrasonic assisted sintering, etc.). The modified low-temperature sintering technology of nanoscale silver has greatly improved the packaging performance.
In this article, the research status of low-temperature sintering technology of nanoscale silver in recent years is reviewed, the mechanism of low-temperature sintering nanoscale silver is summarized, and the influence of different process parameters of nanoscale silver sintering on packaging performance is analyzed. Finally, the development trend of low-temperature sintering nanoscale silver is prospected.
Key words:  nano-silver    low-temperature sintering    packaging    mechanical property
               出版日期:  2019-11-25      发布日期:  2019-11-25
ZTFLH:  TG454  
基金资助: 国电南瑞科技项目(524608180032;524608190046)
通讯作者:  yangjinlong@sgepri.sgcc.com.cn   
作者简介:  杨金龙,2017年1月毕业于南京航空航天大学,获得材料加工工程专业工学博士学位,目前为国电南瑞科技股份有限公司工程师。以第一作者在国内外学术期刊上发表论文10余篇,申请国家发明专利5项,其中授权3项。主要研究领域为电子封装与互连技术。
引用本文:    
杨金龙, 董长城, 骆健. 新型功率模块封装中纳米银低温烧结技术的研究进展[J]. 材料导报, 2019, 33(Z2): 360-364.
YANG Jinlong, DONG Changcheng, LUO Jian. Development of Low-temperature Sintered Nanoscale Silver for New PowerDevice Packaging. Materials Reports, 2019, 33(Z2): 360-364.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2019/V33/IZ2/360
1 丁荣军,刘国友.机车电传动,2014(1),1.
2 曾嵘,赵彪,余占清,等.中国电机工程学报,2018,38(15),4307.
3 王彦刚,刘谞瑜,戴小平,等.大功率变流技术,2017(5),36.
4 赵振波,Wilhelm R, Andre R S.大功率变流技术,2016(1),26.
5 Zhao Z B, Chiang W, Qin H Y. In: PCIM Asia 2017: International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management. Shanghai,2017,pp.46.
6 张波,邓小川,张有润,等.中国电子科学研究院学报,2009,4(2),111.
7 Yan H D, Mei Y H, Li X, et al. IEEE Transactions on Electron Devices,2018,65(10),4499.
8 Matthias K, Silke K, Andreas S. In: 2010 12th Electronics Packaging Technology Conference. Singapore,2010,pp.56.
9 陈佳,李欣,孔亚飞,等.发光学报,2016,37(9),1159.
10 杨呈祥,李欣,孔亚飞,等.发光学报,2016,37(1),94.
11 Dai J R, Li J F, Agyakwa P, et al. IEEE Transactions on Device and Materials Reliability,2018,18(2),256.
12 Wang S, Li M Y, Ji H J, et al. Scripta Materialia,2013,69(11-12),789.
13 Fu S C, Mei Y H, Li X, et al. Journal of Electronic Materials,2015,44(10),3973.
14 Bai J G, Zhang Z Z, Calata J N, et al. IEEE Transactions on Components and Packaging Technologies,2006,29(3),589.
15 Lu G Q, Calata J N, Lei G Y, et al. In: 2007 International Conference on Thermal, Mechanical and Multi-Physics Simulation Experiments in Microelectronics and Micro-Systems. London,2007,pp.1.
16 陈旭,李凤琴,蔺永诚,等.电子元件与材料,2006,25(8),4.
17 张鹏哲.小尺寸纳米银焊膏低温低压连接工艺及其机理研究.硕士学位论文,哈尔滨工业大学,2016.
18 王帅,计红军,李明雨,等.电子工艺技术,2012,33(6),317.
19 Jiu J T, Zhang H, Nagao S, et al. Journal of Materials Science,2016,51(7),3422
20 张亮,Tu K N,孙磊,等.中南大学学报(自然科学版),2015,46(1),49.
21 Paknejad S A, Mannan S H. Microelectronics Reliability,2017,70,1.
22 Yan J F, Zou G S, Wu A P, et al. Scripta Materialia,2012,66(8),582.
23 Navarro L A, Perpiñà X, Vellvehi M, et al. Ingeniería mecánica, tecnología y desarrollo,2012,4(3),97.
24 母凤文,邹贵生,赵振宇,等.焊接学报,2013,34(4),38.
25 张颖川,闫剑锋,邹贵生,等.焊接学报,2013,34(8),17.
26 Siow K S. Journal of Alloys and Compounds,2012,514,6.
27 Khazaka R, Mendizabal L, Henry D. Journal of Electronic Materials,2014,43(7),2459.
28 Roh M H, Nishikawa H, Tsutsumi S, et al. Journal of Materials Science: Materials in Electronics,2018,29(5),3800.
29 Zheng H G, Berry D, Calata J N, et al. IEEE Transactions on Components, Packaging and Manufacturing Technology,2013,3(6),915.
30 Li J, Li X, Wang L, et al. Materials & Design,2018,140,64.
31 Suganuma K, Sato N, Suetake A, et al. ECS Transactions,2018,86(12),17.
32 Ogura H, Maruyama M, Matsubayashi R, et al. Journal of Electronic Materials,2010,39(8),1233.
33 Peng P, Hu A M, Zhao B X, et al. Journal of Materials Science,2012,47(19),6801.
34 温丽,薛松柏,马超力,等.材料导报:综述篇,2019,33(2),386.
35 Yeom J, Li C F, Suganuma K. In: 2018 International Conference on Electronics Packaging and iMAPS All Asia Conference (ICEP-IAAC), Mie,2018,pp.121.
36 Zhang H Q, Wang W G, Bai H L, et al. Journal of Alloys and Compounds,2019,774,487.
37 付善灿.纳米银焊膏无压低温烧结连接方法的绝缘栅双极型晶体管(IGBT)模块封装应用研究.博士学位论文,天津大学,2016.
38 Liu W, An R, Wang C Q, et al. Micromachines,2018,9(7),346.
39 Lee Y S, Yun C H, Kim K H, et al. IEEE Transactions on Components, Packaging and Manufacturing Technology,2014,4(7),1119.
40 Liu W, Wang C H, Wang C Q, et al. IEEE Transactions on Components, Packaging and Manufacturing Technology,2017,7(7),1050.
41 Mei Y H, Li L, Li W L, et al. Journal of Materials Science: Materials in Electronics,2017,28(12),9155.
42 Xie Y J, Wang Y J, Mei Y H, et al. Journal of Materials Processing Technology,2018,255,644.
43 Alayli N, Schoenstein F, Girard A, et al. Materials Chemistry and Phy-sics,2014,148(1-2),125.
44 Li Y, Jing H Y, Han Y D, et al. Journal of Electronic Materials,2016,45(6),3003.
[1] 房延凤,王丹,王晴,孔靖勋,常钧. 碳酸化钢渣及其在建筑材料中的应用现状[J]. 材料导报, 2020, 34(3): 3126-3132.
[2] 刘轩之,顾开选 ,翁泽钜,王凯凯,崔晨,郭嘉,王俊杰. 铝合金深冷处理研究进展[J]. 材料导报, 2020, 34(3): 3172-3177.
[3] 王文权, 李雅倩, 李欣, 刘亮, 陈飞. 选区激光熔化制备Ni-Cr-B-Si合金粉末的微观组织与性能[J]. 材料导报, 2020, 34(2): 2077-2082.
[4] 王海风, 王若轩, 董云谷, 刘鑫. 溶胶-凝胶法制备Eun+x∶SiO2薄膜及其性能研究[J]. 材料导报, 2019, 33(Z2): 165-168.
[5] 王林, 王梦尧, 王佩勋, 卢京宇. 偶联剂改性玄武岩纤维增强水泥基复合材料力学性能[J]. 材料导报, 2019, 33(Z2): 273-277.
[6] 刘玉玲, 张修庆. Fe-Mn合金在生物医学方面的应用及前景[J]. 材料导报, 2019, 33(Z2): 331-335.
[7] 蔡祥, 乔岩欣, 许道奎, 李传强, 杨兰兰, 周慧玲. 镁锂合金强化行为研究进展[J]. 材料导报, 2019, 33(Z2): 374-379.
[8] 吴懿萍, 何臻毅, 周志纲, 熊汉青, 贾寓真, 李承波, 李国锋. 非等温回归再时效对7050铝合金组织与力学性能的影响[J]. 材料导报, 2019, 33(Z2): 394-397.
[9] 陈爱华, 俞坚钢, 陈国平, 唐诤溱, 王鹏举. 合金化元素对铜基块状非晶合金性能影响的研究进展[J]. 材料导报, 2019, 33(Z2): 415-418.
[10] 杨林, 熊建坤, 余勇, 文仲波, 聂甫恒, 杨东, 王东力, 冯雨来. 大热输入对焊条电弧焊低合金钢力学性能的影响[J]. 材料导报, 2019, 33(Z2): 424-427.
[11] 张李锋, 段江. 750 kV变电站地刀连杆杆端轴承断裂失效分析[J]. 材料导报, 2019, 33(Z2): 452-454.
[12] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[13] 巢云秀, 杨宏伟, 原禧敏, 李郁秀, 李耀. 花枝状纳米银的制备及对4-硝基苯酚加氢反应的催化性能[J]. 材料导报, 2019, 33(z1): 307-309.
[14] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[15] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] WU Tao, MAO Lili, WANG Haizeng. Preparation and Defluoridation Performance of Mg/Fe-LDHO/PES Membranous Adsorbent[J]. Materials Reports, 2017, 31(14): 26 -30 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed