Abstract: As the centre of power conversion, power devices play an important role in the generation, transmission and energy-efficient utilization of energy. The development of new generation power devices in the direction of high power density and high junction temperature has placed increasing demands on the packaging technology of power modules. Nevertheless, the limitations of the melting point, solderability, cost-effective, and environmental impacts of traditional solder make it difficult to meet the demands of higher operating temperature and higher reliability for the high power module. The packaging technology represented by low-temperature sintering of nanoscale silver has become a research highlight in the field of power module packaging in recent years, thanks to its high heat resistance temperature, and good thermal and electrical conductivity. The research results show that the precise control of the process parameters such as sintering temperature, sintering pressure and oxygen content in the sintering process of nanoscale silver is the key to form a reliable connection. At the same time, in order to further promote the application of low-temperature sintering technology of nanoscale silver in power module packaging, researchers have developed pressureless sintering technology of nanoscale silver, nano/microscale silver particle mixed sintering technology, and auxiliary sintering methods that can satisfy low-temperature rapid sintering (including laser sintering, current-assisted sintering, spark plasma sintering, ultrasonic assisted sintering, etc.). The modified low-temperature sintering technology of nanoscale silver has greatly improved the packaging performance. In this article, the research status of low-temperature sintering technology of nanoscale silver in recent years is reviewed, the mechanism of low-temperature sintering nanoscale silver is summarized, and the influence of different process parameters of nanoscale silver sintering on packaging performance is analyzed. Finally, the development trend of low-temperature sintering nanoscale silver is prospected.
杨金龙, 董长城, 骆健. 新型功率模块封装中纳米银低温烧结技术的研究进展[J]. 材料导报, 2019, 33(Z2): 360-364.
YANG Jinlong, DONG Changcheng, LUO Jian. Development of Low-temperature Sintered Nanoscale Silver for New PowerDevice Packaging. Materials Reports, 2019, 33(Z2): 360-364.
1 丁荣军,刘国友.机车电传动,2014(1),1. 2 曾嵘,赵彪,余占清,等.中国电机工程学报,2018,38(15),4307. 3 王彦刚,刘谞瑜,戴小平,等.大功率变流技术,2017(5),36. 4 赵振波,Wilhelm R, Andre R S.大功率变流技术,2016(1),26. 5 Zhao Z B, Chiang W, Qin H Y. In: PCIM Asia 2017: International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management. Shanghai,2017,pp.46. 6 张波,邓小川,张有润,等.中国电子科学研究院学报,2009,4(2),111. 7 Yan H D, Mei Y H, Li X, et al. IEEE Transactions on Electron Devices,2018,65(10),4499. 8 Matthias K, Silke K, Andreas S. In: 2010 12th Electronics Packaging Technology Conference. Singapore,2010,pp.56. 9 陈佳,李欣,孔亚飞,等.发光学报,2016,37(9),1159. 10 杨呈祥,李欣,孔亚飞,等.发光学报,2016,37(1),94. 11 Dai J R, Li J F, Agyakwa P, et al. IEEE Transactions on Device and Materials Reliability,2018,18(2),256. 12 Wang S, Li M Y, Ji H J, et al. Scripta Materialia,2013,69(11-12),789. 13 Fu S C, Mei Y H, Li X, et al. Journal of Electronic Materials,2015,44(10),3973. 14 Bai J G, Zhang Z Z, Calata J N, et al. IEEE Transactions on Components and Packaging Technologies,2006,29(3),589. 15 Lu G Q, Calata J N, Lei G Y, et al. In: 2007 International Conference on Thermal, Mechanical and Multi-Physics Simulation Experiments in Microelectronics and Micro-Systems. London,2007,pp.1. 16 陈旭,李凤琴,蔺永诚,等.电子元件与材料,2006,25(8),4. 17 张鹏哲.小尺寸纳米银焊膏低温低压连接工艺及其机理研究.硕士学位论文,哈尔滨工业大学,2016. 18 王帅,计红军,李明雨,等.电子工艺技术,2012,33(6),317. 19 Jiu J T, Zhang H, Nagao S, et al. Journal of Materials Science,2016,51(7),3422 20 张亮,Tu K N,孙磊,等.中南大学学报(自然科学版),2015,46(1),49. 21 Paknejad S A, Mannan S H. Microelectronics Reliability,2017,70,1. 22 Yan J F, Zou G S, Wu A P, et al. Scripta Materialia,2012,66(8),582. 23 Navarro L A, Perpiñà X, Vellvehi M, et al. Ingeniería mecánica, tecnología y desarrollo,2012,4(3),97. 24 母凤文,邹贵生,赵振宇,等.焊接学报,2013,34(4),38. 25 张颖川,闫剑锋,邹贵生,等.焊接学报,2013,34(8),17. 26 Siow K S. Journal of Alloys and Compounds,2012,514,6. 27 Khazaka R, Mendizabal L, Henry D. Journal of Electronic Materials,2014,43(7),2459. 28 Roh M H, Nishikawa H, Tsutsumi S, et al. Journal of Materials Science: Materials in Electronics,2018,29(5),3800. 29 Zheng H G, Berry D, Calata J N, et al. IEEE Transactions on Components, Packaging and Manufacturing Technology,2013,3(6),915. 30 Li J, Li X, Wang L, et al. Materials & Design,2018,140,64. 31 Suganuma K, Sato N, Suetake A, et al. ECS Transactions,2018,86(12),17. 32 Ogura H, Maruyama M, Matsubayashi R, et al. Journal of Electronic Materials,2010,39(8),1233. 33 Peng P, Hu A M, Zhao B X, et al. Journal of Materials Science,2012,47(19),6801. 34 温丽,薛松柏,马超力,等.材料导报:综述篇,2019,33(2),386. 35 Yeom J, Li C F, Suganuma K. In: 2018 International Conference on Electronics Packaging and iMAPS All Asia Conference (ICEP-IAAC), Mie,2018,pp.121. 36 Zhang H Q, Wang W G, Bai H L, et al. Journal of Alloys and Compounds,2019,774,487. 37 付善灿.纳米银焊膏无压低温烧结连接方法的绝缘栅双极型晶体管(IGBT)模块封装应用研究.博士学位论文,天津大学,2016. 38 Liu W, An R, Wang C Q, et al. Micromachines,2018,9(7),346. 39 Lee Y S, Yun C H, Kim K H, et al. IEEE Transactions on Components, Packaging and Manufacturing Technology,2014,4(7),1119. 40 Liu W, Wang C H, Wang C Q, et al. IEEE Transactions on Components, Packaging and Manufacturing Technology,2017,7(7),1050. 41 Mei Y H, Li L, Li W L, et al. Journal of Materials Science: Materials in Electronics,2017,28(12),9155. 42 Xie Y J, Wang Y J, Mei Y H, et al. Journal of Materials Processing Technology,2018,255,644. 43 Alayli N, Schoenstein F, Girard A, et al. Materials Chemistry and Phy-sics,2014,148(1-2),125. 44 Li Y, Jing H Y, Han Y D, et al. Journal of Electronic Materials,2016,45(6),3003.