Please wait a minute...
材料导报  2019, Vol. 33 Issue (Z2): 254-260    
  无机非金属及其复合材料 |
有机缓凝剂对水泥改性乳化沥青胶浆的改善效果研究
杜华川, 王延宁, 何苗苗, 林梓锋, 吕正宗
汕头大学土木与环境工程系,汕头 515000
Study on the Effect of Organic Retarder on the Performance of Cement ModifiedEmulsified Asphalt Mastic
DU Huachuan, WANG Yanning, HE Miaomiao, LIN Zifeng, LYU Zhengzong
Department of Civil and Environmental Engineering, Shantou University, Shantou 515000
下载:  全 文 ( PDF ) ( 2551KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 将适量的萘系减水剂(Naphthalene superplasticizer, NSP)加入到改性乳化沥青(Modified asphalt emulsified,MAE)中能够实现水泥和改性乳化沥青的直接拌和。当NSP的掺量为4% (质量分数,下同)时,水泥沥青胶浆(Cement asphalt mastic, CAM)工作性能不佳。本试验所使用的沥青和三种有机缓凝剂分别为:改性乳化沥青、海菜粉、聚丙烯酰胺(PAM)、葡萄糖酸钠。试验结果表明:海菜粉对CAM的改善效果最好。当海菜粉掺量为0.03%时,CAM 7 d内的强度增量比较大;28 d的抗拉强度和抗压强度最高,凝结时间最短,干缩变化幅度较小。随着海菜粉掺量的增加,CAM的抗拉强度和抗压强度有所降低。PAM由于其自身有很强的粘稠度和絮凝作用,因而对CAM的粘弹性有很大影响;当PAM掺量为0.02%时,CAM的粘度最大,坍流度最小;当PAM掺量由0.01%增加到0.03%时,CAM的粘度、干缩量和抗压强度呈现先增大后减小的规律,坍流度和凝结时间呈现先减小后增大的规律,而抗拉强度随掺量的增加而增大。葡萄糖酸钠对CAM的改善效果最差,虽然加入葡萄糖酸钠能改善CAM的流动性、粘度等非力学性质,但会引起CAM试块较大幅度的体积收缩和干缩,抗拉强度和抗压强度明显降低,凝结时间过长,试件表面出现裂缝等不良现象。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杜华川
王延宁
何苗苗
林梓锋
吕正宗
关键词:  水泥沥青胶浆  改性乳化沥青  改善效果  有机缓凝剂    
Abstract: The addition of an appropriate amount of naphthalene superplasticizer (NSP) to modified asphalt emulsified (MAE) enables direct mixing of cement and modified emulsified asphalt. When the NSP content is 4%, cement asphalt mastic (CAM) does not work well. The asphalt and three organic retarders used in this test are: modified emulsified asphalt, seaweed powder, polyacrylamide (PAM), sodium gluconate. The test results show that seaweed powder has the best effect on CAM. When the dosage of seaweed powder is 0.03%, the 28 d tensile strength and compressive strength of CAM are the highest, the setting time is the shortest, the variation of dry shrinkage is small, and the intensity increment within 7 d is relatively large; with the amount of seaweed powder increased, tensile strength and compressive strength decreased. PAM has a great influence on the viscoelasticity of CAM because of its strong viscosity and flocculation. When the PAM content is 0.02%, the viscosity of CAM is the largest and the turbulence is the smallest. In the process of increasing 0.01% to 0.03%, the viscosity, dry shrinkage and compressive strength of CAM showed a first increase and then decrease, and the turbulence and condensation time showed a first change and then an increase. The tensile strength increases as the amount of the addition increases. Sodium gluconate has the worst improvement effect on CAM. Although the addition of sodium gluconate can improve the non-mechanical properties such as fluidity and viscosity of CAM, it will cause large vo-lume shrinkage and shrinkage, tensile strength and resistance of CAM test pieces. The pressure strength is obviously lowered, the setting time is too long, and cracks appear on the surface of the test piece.
Key words:  cement asphalt mastic    modified emulsified asphalt    improvement effect    organic retarder
               出版日期:  2019-11-25      发布日期:  2019-11-25
ZTFLH:  U414  
通讯作者:  ctlu@stu.edu.cn   
作者简介:  杜华川,汕头大学硕士研究生在读。2013年9月至2017年6月,在四川农业大学获得工程造价专业工学学士学位,毕业后在汕头大学攻读硕士学位。申请国家发明专利两项,其中已授权一项。研究工作主要围绕以水泥沥青混凝土为代表的铺面材料,同时也开展关于微生物加固软土地基的新领域研究,参与了两项国家自然科学基金青年项目。
吕正宗,汕头大学副教授。2017年至今任汕头大学副教授。在国内外核心期刊上发表论文二十余篇,其中SCI期刊论文3篇,EI期刊1篇,共有4项发明专利获得授权。主要研究方向为新型铺面材料,并参与了十多项重大工程的技术方案研究。
引用本文:    
杜华川, 王延宁, 何苗苗, 林梓锋, 吕正宗. 有机缓凝剂对水泥改性乳化沥青胶浆的改善效果研究[J]. 材料导报, 2019, 33(Z2): 254-260.
DU Huachuan, WANG Yanning, HE Miaomiao, LIN Zifeng, LYU Zhengzong. Study on the Effect of Organic Retarder on the Performance of Cement ModifiedEmulsified Asphalt Mastic. Materials Reports, 2019, 33(Z2): 254-260.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2019/V33/IZ2/254
1 刘永亮,孔祥明,阎培渝.工程力学,2011,28(7),53.
2 Brown S F, Needham D. In: The 2000 Annual Meeting of the Associat Tecion of Asphalt Paving Technologists,Chongqing,2000,pp.69.
3 杜少文,王振军.建筑材料学报,2009,12(1),71.
4 杨进波,阎培渝,孔祥明,等.中国科学技术科学,中国科学杂志社,2010.
5 Lu C T, Kuo M F, Shen D H. Construction & Building Materials,2009,23(7),2580.
6 封晨辉.沥青材料的粘度和粘附性研究.硕士学位论文,长安大学,2003.
7 胡曙光.先进水泥基复合材料,科学出版社,2009.
8 刘永亮,孔祥明,邹炎,等.铁道科学与工程学报,2009,6(3),1.
9 秦先涛,祝斯月,何晓鸣,等.河北工业大学学报,2018,12(6),87.
10 秦先涛,祝斯月,豆怀兵,等.材料导报:研究篇,2014,28(8),121.
11 赵维,李东旭,李清海.材料导报:综述篇,2010,24(6),136.
12 梅迎军,王培铭,李志勇,等.西安建筑科技大学学报:自然科学版,2009(3),404.
13 秦先涛,祝斯月,姜艺,等.公路,2017,1(1),191.
[1] 王岚, 崔世超, 任敏达. 多聚磷酸复配SBS改性沥青微观结构特性评价[J]. 材料导报, 2019, 33(24): 4105-4110.
[2] 蓝群力, 张新天, 卞立波, 赵斌, 夏宇, 曹玉海. 高陡岩石边坡植被恢复组合结构与材料性能研究[J]. 材料导报, 2019, 33(Z2): 143-146.
[3] 张庆, 侯德华, 史纪村. 橡胶沥青的微观表征方法及其微观特性综述[J]. 材料导报, 2019, 33(Z2): 247-253.
[4] 赵可成, 陈宇, 黄考取. 基于核壳结构缓释剂和抗氧化剂的新型复合沥青抗老化剂研究[J]. 材料导报, 2019, 33(Z2): 261-266.
[5] 刘婉婉, 马昆林, 张传芹, 龙广成, 谢友均, 边伟. 透水混凝土对城市雨水径流中污染物净化原理的研究进展[J]. 材料导报, 2019, 33(Z2): 293-299.
[6] 张新天, 姚鑫航, 蓝群力. 路用聚合物稳定碎石基层养生规律分析[J]. 材料导报, 2019, 33(Z2): 639-642.
[7] 金鑫, 郭乃胜, 尤占平, 谭忆秋. 聚氨酯改性沥青研究现状及发展趋势[J]. 材料导报, 2019, 33(21): 3686-3694.
[8] 熊锐, 杨发, 关博文, 谢超, 李立顶, 盛燕萍, 陈华鑫. 路用高抗滑集料耐磨性能评价与机理分析[J]. 材料导报, 2019, 33(20): 3436-3440.
[9] 吕政桦, 申爱琴, 李悦, 郭寅川, 喻沐阳. 基于遗传优化的乳化沥青冷再生混合料的疲劳性能及机理研究[J]. 材料导报, 2019, 33(16): 2704-2709.
[10] 王岚, 崔世超, 常春清. 基于流变学与黏弹性理论的温拌胶粉改性沥青的高温性能研究[J]. 材料导报, 2019, 33(14): 2386-2391.
[11] 王岚, 李冀, 桂婉妹. 表面活性剂对温拌胶粉改性沥青高低温性能的影响[J]. 材料导报, 2019, 33(6): 986-990.
[12] 马晓燕, 陈华鑫, 张星宇, 邢明亮, 杨平文, 王兆力. SBS改性沥青低温流变性与原材料性能相关性研究[J]. 材料导报, 2018, 32(22): 3885-3890.
[13] 王朝辉, 韩晓霞, 陈姣, 侯荣国, 郑少鹏. 浇注式导电沥青混凝土传导热效果[J]. 材料导报, 2018, 32(22): 3891-3899.
[14] 常明丰, 裴建中, 黄平明, 熊锐. 考虑级配颗粒物质间接触力力链的分布概率分析[J]. 材料导报, 2018, 32(20): 3618-3622.
[15] 王泳丹, 刘子铭, 郝培文. 废旧玻璃在沥青混合料中的应用研究进展[J]. 材料导报, 2018, 32(15): 2626-2634.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] WU Tao, MAO Lili, WANG Haizeng. Preparation and Defluoridation Performance of Mg/Fe-LDHO/PES Membranous Adsorbent[J]. Materials Reports, 2017, 31(14): 26 -30 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed