Please wait a minute...
材料导报  2019, Vol. 33 Issue (Z2): 247-253    
  无机非金属及其复合材料 |
橡胶沥青的微观表征方法及其微观特性综述
张庆1,2, 侯德华1,3, 史纪村1,3
1 河南省高远公路养护技术有限公司,新乡 453003;
2 河南师范大学化学化工学院,新乡 453007;
3 河南省高等级公路检测与养护技术重点实验室,新乡 453003
Research Progress of Microscopic Characterization of Rubber Asphalt
ZHANG Qing1,2, HOU Dehua1,3, SHI Jicun1,3
1 Henan Gaoyuan Highway Maintenance Technology Co., Ltd, Xinxiang 453003;
2 School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007;
3 Henan Province Key Laboratory of High Grade Highway Detection and Maintenance Technology, Xinxiang 453003
下载:  全 文 ( PDF ) ( 2895KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 橡胶沥青是将废旧轮胎加工为橡胶粉粒,并在充分拌合的高温条件下与基质沥青充分溶胀反应后形成改性沥青胶结材料,其是较为理想的环保型路面材料,已成为当前公路工程材料领域的研究热点。橡胶沥青力学性能的研究已经相对比较成熟,特别是基于力学指标研究橡胶沥青的生产工艺、应用技术也已非常普遍。目前橡胶沥青的力学指标体系主要有分级指标、高温稳定性指标、低温抗裂性指标、耐老化性指标。研究表明胶粉的加入使橡胶沥青的针入度变小,软化点提高,黏度增加;动态剪切流变试验则表明,胶粉对沥青高温性能的改性效果非常显著,其高温分级比基质沥青提高2~3级,同时也赋予橡胶沥青优良的低温抗裂性能以及良好的弹性。对橡胶沥青的改性机理研究及储存稳定性还需进一步的系统深入研究。
由于沥青是由多种化合物组成的混合物,轮胎胶粉则是由天然橡胶或者人工合成橡胶、硫磺、碳黑、增塑剂和抗氧化剂组成,两者高温混溶后,相互作用十分复杂。鉴于当前研究条件的限制,仅通过力学指标很难全面阐述其微观作用机理。因此,通过微观表征方法来分析橡胶沥青的改性机理已成为其主要研究方向。谱学分析方法便于分子结构定性分析,并可以有效对目标混合物进行分离,从而清晰地描绘出表征对象微观结构特征及其组成分布情况;此外,采用微观显微技术则可以对橡胶粉以及橡胶沥青的形态学进行研究。
基于此,本文详细介绍谱学分析方法和微观形貌分析方法等微观表征技术在橡胶沥青改性机理研究中的应用情况,并通过谱学分析方法以及微观形貌分析法来总结橡胶沥青改性机理的研究进展,从微观尺度进一步阐述橡胶沥青的评价方法,可为橡胶沥青微观表征方法的合理运用提供参考借鉴。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张庆
侯德华
史纪村
关键词:  橡胶沥青  红外光谱法  热重分析法  凝胶渗透色谱法  显微结构分析法    
Abstract: Rubber asphalt is a modified asphalt cement material which is processed into rubber powder and fully swelled with matrix asphalt under high temperature conditions of sufficient mixing. It’s environment-friendly pavement materialandhas become research hotspot in the field of highway engineering materials.The research on the mechanical properties of rubber asphalt has been relatively extensive, especially the production technology and application technology of rubber asphalt based on mechanical indexes have been very common.Studies have shown that adding rubber powder can make the penetration degree of rubber asphalt become smaller, the softening point is increased, and the viscosity is increased; The dynamic shear rheological test shows thatthe effect of rubber powder on the high temperature performance of asphalt is significant. The high temperature classification is two to three grades higher than that of the matrix asphalt. At the same time, rubber asphalt is endowed with excellent low temperature crack resistance and good elasticity. However, the modification mechanism and storage stability of rubber asphalt need further systematic and in-depth study.
Since asphalt is a mixture of various compounds, tire rubber powder is composed of natural rubber or synthetic rubber, sulfur, carbon black, plasticizer and antioxidant. After high temperature miscibility, the interaction is very complicated.In view of the limitations of current research conditions, it is difficult to fully explain the mechanism of microscopic action only through mechanical indicators.Therefore, the analysis of the modification mechanism of rubber asphalt by microscopic characterization has become its main research direction.Spectral analysis method facilitates the qualitative analysis of molecular structure, and can effectively separate the target mixture, so as to clearly depict the microstructure characteristics and composition distribution of the characterization object; In addition, the morphology of rubber powder and rubber asphalt can be studied by microscopic microscopy.
Based on this, this review introduces in detail the application of microscopic characterization techniques such as spectroscopic analysis methods and micromorphology analysis methods in the study of rubber asphalt modification mechanism, andthe research progress of the modification mechanism of rubber asphalt is summarized by the methods of spectroscopic analysis and microscopic morphology analysis. The evaluation me-thod of rubber asphalt is further elaborated from the microscale, which can provide reference for the rational application of the rubber asphalt microscopic characterization method.
Key words:  rubber asphalt    infrared spectroscopy    thermogravimetric analysis    gel permeation chromatography    microstructure analysis
               出版日期:  2019-11-25      发布日期:  2019-11-25
ZTFLH:  U414  
基金资助: 新乡市重大科技专项(ZD19007)
通讯作者:  zhangqing666@vip.163.com   
作者简介:  张庆,工学博士,高级工程师,硕士生导师,公路养护装备国家工程实验室研究中心总工程师。2013年在长安大学获得博士学位,2016—2017年到加拿大滑铁卢大学进行学术访问、合作研究。其研究团队致力于依托材料科学与工程科学的交叉学科优势,从基础应用研究和技术开发出发,注重功能材料的微观结构调控与优化,围绕材料综合性能的提升,实现了工程功能材料一些关键技术的重要突破,有效提高了多种工程材料的性能及工艺水平。在SCI、EI、核心源期刊杂志发表文章多篇,获授权发明专利多项,主持承担多项重点科研项目,获得多项科技奖励荣誉。通过长期研究,建立了丰富的理论储备和多元的研发体系。
引用本文:    
张庆, 侯德华, 史纪村. 橡胶沥青的微观表征方法及其微观特性综述[J]. 材料导报, 2019, 33(Z2): 247-253.
ZHANG Qing, HOU Dehua, SHI Jicun. Research Progress of Microscopic Characterization of Rubber Asphalt. Materials Reports, 2019, 33(Z2): 247-253.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2019/V33/IZ2/247
1 Rongsheng C R C. Journal of Southeast University (Natural Science Edition),2008,2,016.
2 Tan Y, Guo M, Cao L, et al. Construction and Building Materials,2013,47,799.
3 杨光,申爱琴,陈志国,等.公路交通科技,2016,33(4),25.
4 刘斌清,胡松山,谭华,等.中外公路,2015(6),321.
5 Rajalingam P, Sharpe J, Baker W E. Rubber Chemistry and Technology,1993,66(4),664.
6 Abdelrahman M A, Carpenter S H. Transportation Research Record,1999,1661(1),106.
7 Bahia H U, Davies R. Asphalt Paving Technology,1994,63,414.
8 吕泉,黄卫东,柴冲冲.重庆交通大学学报(自然科学版),2014,33(4),51.
9 何亮,马育,凌天清,等.功能材料,2015,46(21),21093.
10 关润伶,朱红.光谱学与光谱分析,2007,27(11),2270.
11 赵斌,吴桂芳,郝培文.化工进展,2012,31(12),2753.
12 秦大可,彭伟良,蒋耀兴.天津工业大学学报,2010,29(5),19.
13 罗丽梅,张华,刘季红,等.塑料科技,2010,38(9),70.
14 王国强.合成橡胶工业,1994(3),177.
15 张小俊,姚杰.高分子材料科学与工程,2013,29(7),127.
16 Jemison H B, Burr B L, Davison R R, et al. Liquid Fuels Technology,1992,10(4-6),795.
17 Karlsson R,Isacsson U. Journal of Materials in Civil Engineering,2003,15(2),157.
18 Mouillet V,Lamontagne J,Durrieu F, et al. Fuel,2008,87(7),1270.
19 Singh B,Lokesh K, Gupta M, et al. Journal of Applied Polymer Science,2013,129(5),2821.
20 朱浩然,蔡海泉,李峰,等.重庆交通大学学报(自然科学版),2016,35(4),35.
21 Zofka A, Maliszewska D, Maliszewski M, et al. Drogi I Mosty,2015,14(3),163.
22 刘言,蔡文生,邵学广.科学通报,2015(8),704.
23 YutI,Zofka A. Applied Spectroscopy,2011,65(7),765.
24 Planche J P, Claudy P M, Letoffe J M, et al. ThermochimicaActa,1998,324(1-2),223.
25 Tan Y, Guo M. Materials and Structures,2014,47(4),605.
26 丁海波,Asphaltan A.公路工程,2016,41(6),25.
27 Li P, Ding Z, Zou P, et al. Construction & Building Materials,2017,138,418.
28 曾凡奇,黄晓明,李海军.交通运输工程学报,2005,5(4),37.
29 徐良,熊雯华.公路交通技术,2014(1),34.
30 李卫青,贾德民,傅伟文,等.弹性体,2002,12(1),52.
31 Ghavibazoo A, Abdelrahman M. International Journal of Pavement Engineering,2013,14(5),517.
32 Yu H,Leng Z,Gao Z.Construction & Building Materials,2016,125,168.
33 Leite L F M, Soares B G. Liquid Fuels Technology,1999,17(9-10),18.
34 Jeong K D, Lee S J, Amirkhanian S N, et al. Construction & Building Materials,2010,24(5),824.
35 汪大受.微生物学通报,1978,5(3),35.
36 冯小佼,郭治安,王培,等.应用化学,2012,29(3),364.
37 Baek S H, Kim H H, Doh Y S, et al. KSCE Journal of Civil Enginee-ring,2009,13(3),161.
38 杨小龙,李波,刘祥,等.建筑材料学报,2017,20(4),640.
39 Shen J,Li B,Xie Z.Construction and Building Materials,2017,149,202.
40 Irena Gawel, Robert Stepkowski A, Czechowski F. Industrial & Enginee-ring Chemistry Research,2006,45(9),3044.
41 Sun D, Lu W. Petroleum Science and Technology,2006,24(7),839.
42 李春香.橡胶沥青胶结料关键技术研究.硕士学位论文,长安大学,2012.
43 Liang M, Xin X, Fan W, et al. Construction and Building Materials,2015,74,124.
44 Shatanawi K, Thoedsen C. In: Globhal Plash Environmental Conference. Orland, FL, USA,2008,pp.1130.
45 Liang M,Xin X, Fan W, et al. Construction & Building Materials,2015,74,235.
46 Wang Y, Feng X. Advanced Materials Research,2011,194-196,844.
47 刘冬娴,徐连生,贺江南.合成材料老化与应用,2015(6),27.
48 马爱群.微波辐射活化废胶粉改性沥青性能及共混机理研究.硕士学位论文,扬州大学,2006.
49 Thives L P, Pais J C, Pereira P A A, et al. Construction and Building Materials,2013,47,431.
50 Pais J C, Pereira P A A,Amorim S R. Rubberized Asphalt Rubber,2015,2015,1.
51 Mazumder M, Ahmed R, Ali A W, et al. Construction and Building Materials,2018,186,313.
52 邵腊庚,王高超,严二虎,等.中外公路,2018,38(4),297.
53 杨军,龚明辉,Pauli T,等.石油学报(石油加工),2015,31(4),959.
54 关泊,张德鹏,李雨,等.西安建筑科技大学学报(自然科学版),2017(6),919.
55 Shen Z X J. New Front,2015,2015,10.
[1] 王岚, 崔世超, 任敏达. 多聚磷酸复配SBS改性沥青微观结构特性评价[J]. 材料导报, 2019, 33(24): 4105-4110.
[2] 蓝群力, 张新天, 卞立波, 赵斌, 夏宇, 曹玉海. 高陡岩石边坡植被恢复组合结构与材料性能研究[J]. 材料导报, 2019, 33(Z2): 143-146.
[3] 杜华川, 王延宁, 何苗苗, 林梓锋, 吕正宗. 有机缓凝剂对水泥改性乳化沥青胶浆的改善效果研究[J]. 材料导报, 2019, 33(Z2): 254-260.
[4] 赵可成, 陈宇, 黄考取. 基于核壳结构缓释剂和抗氧化剂的新型复合沥青抗老化剂研究[J]. 材料导报, 2019, 33(Z2): 261-266.
[5] 刘婉婉, 马昆林, 张传芹, 龙广成, 谢友均, 边伟. 透水混凝土对城市雨水径流中污染物净化原理的研究进展[J]. 材料导报, 2019, 33(Z2): 293-299.
[6] 张新天, 姚鑫航, 蓝群力. 路用聚合物稳定碎石基层养生规律分析[J]. 材料导报, 2019, 33(Z2): 639-642.
[7] 金鑫, 郭乃胜, 尤占平, 谭忆秋. 聚氨酯改性沥青研究现状及发展趋势[J]. 材料导报, 2019, 33(21): 3686-3694.
[8] 熊锐, 杨发, 关博文, 谢超, 李立顶, 盛燕萍, 陈华鑫. 路用高抗滑集料耐磨性能评价与机理分析[J]. 材料导报, 2019, 33(20): 3436-3440.
[9] 吕政桦, 申爱琴, 李悦, 郭寅川, 喻沐阳. 基于遗传优化的乳化沥青冷再生混合料的疲劳性能及机理研究[J]. 材料导报, 2019, 33(16): 2704-2709.
[10] 王岚, 崔世超, 常春清. 基于流变学与黏弹性理论的温拌胶粉改性沥青的高温性能研究[J]. 材料导报, 2019, 33(14): 2386-2391.
[11] 王岚, 李冀, 桂婉妹. 表面活性剂对温拌胶粉改性沥青高低温性能的影响[J]. 材料导报, 2019, 33(6): 986-990.
[12] 马晓燕, 陈华鑫, 张星宇, 邢明亮, 杨平文, 王兆力. SBS改性沥青低温流变性与原材料性能相关性研究[J]. 材料导报, 2018, 32(22): 3885-3890.
[13] 王朝辉, 韩晓霞, 陈姣, 侯荣国, 郑少鹏. 浇注式导电沥青混凝土传导热效果[J]. 材料导报, 2018, 32(22): 3891-3899.
[14] 常明丰, 裴建中, 黄平明, 熊锐. 考虑级配颗粒物质间接触力力链的分布概率分析[J]. 材料导报, 2018, 32(20): 3618-3622.
[15] 王泳丹, 刘子铭, 郝培文. 废旧玻璃在沥青混合料中的应用研究进展[J]. 材料导报, 2018, 32(15): 2626-2634.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] WU Tao, MAO Lili, WANG Haizeng. Preparation and Defluoridation Performance of Mg/Fe-LDHO/PES Membranous Adsorbent[J]. Materials Reports, 2017, 31(14): 26 -30 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed