Please wait a minute...
材料导报  2019, Vol. 33 Issue (Z2): 169-174    
  无机非金属及其复合材料 |
Ti-Si-N纳米多层膜的研究进展
韩瑞路, 阎红娟
北方工业大学机械与材料工程学院,北京 100144
Current Research Status of Ti-Si-N Nano-multilayer Films
HAN Ruilu, YAN Hongjuan
College of Mechanical and Material Engineering, North China University of Technology, Beijing 100144
下载:  全 文 ( PDF ) ( 1699KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 TiN存在高温氧化不良、固有脆性等缺点。将硅混合到TiN网络中,形成Ti-Si-N纳米多层膜,此纳米多层膜的硬度有了显著的提高。Ti-Si-N纳米多层膜是一类有着广阔应用前景的新材料,它在涂料、航空航天工业、电子器件等众多领域都有着广泛的应用。尤其在硬质合金刀具领域,较高的硬度、较好的耐磨性和韧性能够延长刀具的使用寿命。
Ti-Si-N纳米多层膜制备方法有物理气相沉积和化学气相沉积两大类。物理气相沉积法是原材料在腔体的一端蒸发,然后沉积在腔体另一端较冷的基体上的方法。化学气相沉积在高温下发生化学反应,使钛、硅、氮原子发生重新组合,在基体表面生成Ti-Si-N纳米多层膜。与物理气相沉积方法相比,化学气相沉积方法需要的温度更高,并且化学反应中存在SiH4等危险性气体,不适合大规模工业生产。Ti-Si-N纳米多层膜的性能主要受Si含量、调制周期和热处理温度等影响。随着Si含量的增加,纳米多层膜的性能先增强后减弱,Si含量在2.76%(质量分数)时,纳米多层膜硬度最大,摩擦系数最小。不同调制周期的多层膜性能优于单层膜,调制周期为0.7 nm时,纳米多层膜硬度达到28.7 GPa,弹性模量为301.1 GPa。随着退火温度的升高,纳米多层膜的附着性先增强后减弱,温度在800~950 ℃时,纳米多层膜硬度达到(49.7±0.83) GPa,结合力为83 N。纳米多层膜有超硬性,耐磨性和耐高温氧化性。对于纳米多层膜的超硬性,不同学者提出了不同的强化理论:交变应力场、模量差和Hall-petch强化理论;通过摩擦磨损实验可以判断纳米多层膜的磨损机制;在TiN中加入Si,生成的Ti-Si-N纳米多层膜具有耐高温氧化性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
韩瑞路
阎红娟
关键词:  Ti-Si-N  纳米多层膜  高温热稳定性  摩擦学性能    
Abstract: Due to the disadvantages of poor oxidation at high temperature and inherent brittleness of TiN, Si is mixed into TiN network to form Ti-Si-N nano-multilayers. The hardness of the nano-multilayer films was significantly improved. Ti-Si-N nano-multilayers is a kind of new material with broad application prospects. It is widely used in coating, aerospace industry, tool hardening electronic devices and many other fields. Especially in the field of cemented carbide tools, higher hardness, wear resistance and toughness can extend tool life.
The preparation methods of Ti-Si-N nano-multilayers include physical vapor deposition and chemical vapor deposition. Physical vapor deposition is the evaporation of raw materials at one end of the cavity, and then deposited on the cooler substrate at the other end of the cavity. Chemical vapor deposition (CVD) is a chemical reaction at high temperature, which makes Ti, Si and N atoms recombine to form Ti-Si-N nano-multilayer films on the surface of the substrate. Compared with physical vapor deposition method, chemical vapor deposition method needs higher temperature, there are dangerous gases such as SiH4 in the chemical reaction, and is not suitable for large-scale industrial production. Ti-Si-N nano-multilayers are mainly affected by Si content, modulation period and heat treatment temperature. With the increase of Si content, the properties of nano-multilayers first increase and then decrease. When Si content is 2.76%, the hardness of nano-multilayers is the highest and the friction coefficient is the smallest. The properties of multilayers with different modulation periods are better than that of monolayers. When the modulation pe-riod is 0.7 nm, the hardness of nano-multilayers reaches 28.7 GPa and the elastic modulus is 301.1 GPa. With the increase of fire temperature, the adhesion of nano-multilayers first increases and then decreases. The hardness of nano-multilayers reaches (49.7±0.83) GPa and the binding force is 83 N at 800—950 ℃. Nano-multilayer films have super-hardness, wear resistance and high temperature oxidation resistance. Different scholars have put forward different strengthening theories for the superhard properties of nano-multilayers: alternating stress field, modulus diffe-rence and Hall-petch strengthening theory; wear mechanism of nano-multilayers can be judged by friction and wear experiments; Ti-Si-N nano-multilayers formed by adding Si element in TiN have high temperature oxidation resistance.
Key words:  Ti-Si-N    nano-multilayer films    thermal stability    tribological properties
               出版日期:  2019-11-25      发布日期:  2019-11-25
ZTFLH:  TB43  
基金资助: 国家自然科学基金(51575004;51775044;11704008);北方工业大学毓优青年、毓优团队计划和学生科技活动
通讯作者:  yanhongj@sina.com   
作者简介:  韩瑞路,2018年6月毕业于郑州大学,获得工学学士学位。现为北方工业大学机械工程专业研究生。目前主要研究方向为纳米多层膜的高温性能。
阎红娟,博士,高级实验师。研究方向:表面改性技术,超硬薄膜制备与表征。
引用本文:    
韩瑞路, 阎红娟. Ti-Si-N纳米多层膜的研究进展[J]. 材料导报, 2019, 33(Z2): 169-174.
HAN Ruilu, YAN Hongjuan. Current Research Status of Ti-Si-N Nano-multilayer Films. Materials Reports, 2019, 33(Z2): 169-174.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2019/V33/IZ2/169
1 鲜广,赵海波,梁红樱,等.表面技术,2017,46(8),33.
2 张山山,王锦标,苏永要.材料导报:综述篇,2014,28(11),147.
3 Shugurov A R, Kazachenok M S. Surface & Coatings Technology,2018,12(21),14.
4 Wan Q,Ding H,Yousaf M I,et al. Thin Solid Films,2016,85(21),17.
5 Wang Yue,Li Jinlong,Dang Chaoqun,et al. Materials Characterization,2017,28(25),347.
6 白雪冰,李金龙,王永欣,等.表面技术,2017(11),56.
7 Cai Z H, Di Y L, Zhang P. Shenyang University of Technology,2011,33(4),375.
8 Wang Yue, Li Jinlong, Dang Chaoqun, et al. Tribology International,2017,28(21),147.
9 姚懿容,李金龙,朱丽慧,等.中国表面工程,2015(6),22.
10 Sun P L, Su C Y, Liou T P, et al. Journal of Alloys and Compounds,2011,509(6),3190.
11 王振玉,徐胜,张栋,等.金属学报,2014(5),78.
12 Cui Huawei,Cui Xiufang,Wang Haidou, et al. Chinese Journal of Mechanical Engineering,2015,28(1),132.
13 Wang Dengyong, Zhu Zengwei, Wang Ningfeng, et al. Chinese Journal of Mechanical Engineering,2016,29(5),971.
14 Xu Y X, Chen L, Liu Z Q, et al. Surface & Coatings Technology,2017,321,180.
15 Halil Caliskan,Celil Cagatay Celil,Peter Panjan. Journal of Nano Research,2016,45(38),524.
16 Kim S M, Kim E Y, Kim D J, et al. Surface Engineering,2012,45(6),257.
17 Zhang S, Wang L, Wang Q, et al.Surface & Coatings Technology,2013,214(2),153.
18 He N, Li H, Li J, et al. Tribology International,2016,98,133.
19 赵永生,李伟,刘平,等.机械工程材料,2013,37(6),6.
20 Asatekin A, Barr M C, Baxamusa S H, et al. Materials Today,2010,13,26.
21 Stassen I, Styles M, Grenci G, et al. Nature Materials,2016,15,304.
22 Selvakumar N, Barshilia H C. Solar Energy Materials and Solar Cells,2010,98,1.
23 Bachmann P K, Gartner G, Lydtin H. MRS Bulletin,1988,13,52.
24 Diserens M, Patscheider J, Levy F. Surface & Coatings Technology,1998,108,34.
25 Brauer G, Szyszka B, Vergohl M, et al. Vacuum,2010,84,1354.
26 徐益,钟富平,黄楠.功能材料,2004(5),541.
27 赵永生,李伟,刘平,等.真空科学与技术学报,2014,34(3),245.
28 Shen Y G, Ziu Z J, Jiang N,et al. Journal Materials Research,2004,19,523.
29 Vettivel S C, Jeganv R, Vigneshb J, et al. Surfaces and Interfaces,2017,6,1.
30 邹伶俐.机械工程师,2018(8),98.
31 田灿鑫,周小东,周思华,等.表面技术,2015,44(8),15.
32 Yokota K, Nakamura K, Kasuya T, et al. Thin Solid Films,2005,473,340.
33 陶冶,张凌云.航空工艺技术,1997(4),26.
34 万强.Ti-Si-N纳米晶复合陶瓷材料合成、结构表征及性能研究.博士学位论文,武汉大学,2016.
35 Satou M, Andoh Y, Ogata K,et al. Journal of Applied Physics,1985,24,656.
36 Kiuchi M, Tomita M, Fujii K, et al.Journal of Applied Physics,1987,26,L938.
37 Gago R, Soldera F, Hubner R, et al. Journal of Alloys and Compounds,2013,561,874.
38 Chauhan K V, Rawal S K. Procedia Technology,2014,14,430.
39 李世直,徐翔,等.金属学报,1988(3),229.
40 谢婷婷,王向红,吴百中,等.材料保护,2015,48(2),51.
41 王建鹏,李伟,刘平,等.中国有色金属学报,2014,24(3),739.
42 鞠洪博,喻利花,许俊华.真空科学与技术学报,2014,34(6),620.
43 郑伟,李伟,孟佳,等.功能材料,2016,47(1),1038.
44 黎海旭,唐鹏,吴正涛,等.机械工程学报,2018,54(6),32.
45 Chen M, Cai F, Chen W, et al. Surface and Coatings Technology,2017,312,25.
46 Yang W M C, Tsakalakos T, et al. Journal of Applied Physics,1977,48,876.
47 Pickett W E. Journal Physics,1982,12,2195.
48 Henein G E, Hilliard J E.Journal of Applied Physics,1983,54,728.
49 Tsakalakos T, Hilliard J E.Journal of Applied Physics,1983,54,734.
50 Chu X. Deposition and characterization of novel polycry stalline nitride superlattice coatings, Northwestern University,USA,1995.
51 Koehler J S. Physical Review B,1970,2(2),547.
52 Kato M, Mori T, Schwartz L H. Acta Metallurgica Sinica,1980,28(3),285.
53 Anderson P M, Li C. Nanostructured Materials,1995,5(3),349.
54 陈朋灿,李伟,卢建富,等.功能材料,2015(11),11080.
55 罗杉正,张晓宇,袁晓光,等.金属热处理,2015,40(2),81.
56 Tang C J. Surfaces & Interfaces,2017,11(2),66.
57 李忠厚,宫学博,郭腾腾,等.表面技术,2015(1),68.
58 刘广庆,张帅,刘孟寅,等.材料工程,2011(10),556.
59 Wang Dengyong,Zhu Zengwei,Wang Ningfeng,et al. Chinese Journal of Mechanical Engineering,2016,5,87.
[1] 李红,邢增程,Erika Hodúlová,胡安明,Wolfgang Tillmann. 退火处理工艺在纳米多层膜材料研究中的应用进展[J]. 材料导报, 2020, 34(3): 3099-3105.
[2] 祁渊, 龚俊, 杨东亚, 王宏刚, 高贵, 任俊芳, 陈生圣. 纳米Al2O3填料增强PEEK-PTFE复合材料基于环-块摩擦结构的摩擦过程研究[J]. 材料导报, 2019, 33(10): 1756-1761.
[3] 苏鹏, 熊云, 刘晓, 杨鹤, 范林君. 洋葱状纳米碳烟颗粒在基础油中的摩擦学性能[J]. 《材料导报》期刊社, 2018, 32(8): 1258-1262.
[4] 王淑庆, 王成彪, 朱丽娜, 岳文, 付志强, 康嘉杰. Si3N4和52100钢对磨副材料对CrN薄膜干摩擦学行为的影响*[J]. 《材料导报》期刊社, 2017, 31(4): 41-46.
[5] 国洪建, 贾均红, 张振宇, 梁补女, 陈文元, 李博, 汪建义. 脉冲激光沉积VN/Ag复合薄膜的组织及摩擦学性能研究*[J]. 《材料导报》期刊社, 2017, 31(2): 55-59.
[6] 宋凯强, 曾美琴, 朱敏, 胡仁宗, 鲁忠臣. 纳米相复合Al-Sn合金的反应球磨制备及性能研究*[J]. 《材料导报》期刊社, 2017, 31(12): 68-72.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] WU Tao, MAO Lili, WANG Haizeng. Preparation and Defluoridation Performance of Mg/Fe-LDHO/PES Membranous Adsorbent[J]. Materials Reports, 2017, 31(14): 26 -30 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed