Please wait a minute...
材料导报  2019, Vol. 33 Issue (4): 590-594    https://doi.org/10.11896/cldb.201904005
  无机非金属及其复合材料 |
镧、铈改性介孔氧化铝对氟离子的吸附
刘德坤,刘航,杨柳,罗永明,韩彩芸
昆明理工大学环境科学与工程学院,昆明 650500
Adsorption of Fluoride on Lanthanum or Cerium Modified Mesoporous Alumina
LIU Dekun, LIU Hang, YANG Liu, LUO Yongming, HAN Caiyun
Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500
下载:  全 文 ( PDF ) ( 3939KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以La、Ce为改性物负载至其他载体表面作为高效除氟吸附剂已经受到广泛的关注。但是将La和Ce负载到介孔氧化铝(MA)却少见报道。本研究制备了La和Ce改性介孔氧化铝并将其用于氟的去除。采用N2吸脱附等温线、X射线衍射(XRD)、傅里叶红外光谱(FTIR)对该吸附剂的结构性质进行了表征。同时,考察了吸附剂接触时间、初始浓度和溶液pH等吸附条件对氟离子吸附效果的影响。结果表明,反应在150 min 时达到吸附平衡,此时La/MA的氟去除率达92.2%,吸附氟容量大小为La/MA>Ce/MA>MA;氟吸附量随初始浓度的增大而增大;在pH值为5~9时,除氟效果较好;吸附等温线方程均符合Langmuir等温吸附模型;La/MA的氟离子最大吸附容量为27.9 mg/g;共存阴离子对氟吸附的影响程度为CO32->SO42->NO3->Cl-。最后比较了吸附前后的FTIR,可以看出La/MA对氟离子去除效果最佳。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘德坤
刘航
杨柳
罗永明
韩彩芸
关键词:  介孔氧化铝  改性        吸附    
Abstract: Nowadays, a kind of highly efficient fluoride adsorbent has that employ La, Ce as the modifier to the surface of certain carriers has aroused wide concerns. However, the loading of La and Ce into mesoporous alumina(MA) is rarely reported. In this study, La and Ce modified mesoporous alumina were prepared they were used for the removal of fluorine. The structural properties of the adsorbent were characterized by N2 desorption isotherm, X-ray diffraction(XRD) and Fourier transform infrared spectroscopy(FTIR). Furthermore, the effects of contact time, initial concentration and pH value on the adsorption of fluoride were investigated. The results showed that the adsorption equilibrium had been achieved at 150 min, with the fluorine removal rate of 92.2%(La/MA). The order of fluorine adsorption capacity was La/MA>Ce/MA>MA. The fluorine adsorption capacity increased with the increase of initial concentration. Satisfactory fluorine removal effect could be acquired under the pH value of 5—9. The adsorption isotherm equation was in accordance with the Langmuir adsorption isotherm model. The La/MA exhibited a maximum adsorption capacity of 27.9 mg/g. The degree of influence of co-existing anions on fluoride removal followed the order of CO32->SO42->NO3->Cl-. Finally, by comparing the FTIR before and after adsorption, it could be seen that La/MA exerted the best effect on fluoride removal.
Key words:  mesoporous alumina    modified    lanthanum    cerium    fluoride    adsorption
               出版日期:  2019-02-25      发布日期:  2019-03-11
ZTFLH:  TB331  
基金资助: 国家自然科学基金(21507051;21767016;U1402233)
作者简介:  刘德坤,就读于昆明理工大学环境科学与工程学院,是一名在读硕士研究生,主要从事环境功能材料的合成及应用研究。韩彩芸,昆明理工大学环境科学与工程学院,副教授。目前重点研究环境功能材料的合成及其应用。
引用本文:    
刘德坤, 刘航, 杨柳, 罗永明, 韩彩芸. 镧、铈改性介孔氧化铝对氟离子的吸附[J]. 材料导报, 2019, 33(4): 590-594.
LIU Dekun, LIU Hang, YANG Liu, LUO Yongming, HAN Caiyun. Adsorption of Fluoride on Lanthanum or Cerium Modified Mesoporous Alumina. Materials Reports, 2019, 33(4): 590-594.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201904005  或          http://www.mater-rep.com/CN/Y2019/V33/I4/590
1 Alagumuthu G, Rajan M. <i>Chemical Engineering Journal</i>,2010,158(3),451.<br />
2 Yeung C A. <i>Evidence-based Dentistry</i>,2008,9(2),39.<br />
3 Cai H D. <i>Modern environmental hygiene,</i> People’s Medical Publishing House, China,2004(in Chinese).<br />
蔡宏道.现代环境卫生学,人民卫生出版社,1994.<br />
4 Mandal S, Mayadevi S. <i>Chemosphere</i>,2008,72(6),995.<br />
5 Das D P, Das J, Parida K. <i>Journal of Colloid & Interface Science</i>,2003,261(2),213.<br />
6 Min Y M, Hashimoto T, Hoshi N, et al. <i>Water Research</i>,1999,33(16),3395.<br />
7 Castel C, Schweizer M, Simonnot M O, et al. <i>Chemical Engineering Science</i>,2000,55(17),3341.<br />
8 Garmes H, Persin F, Sandeaux J, et al. <i>Desalination</i>,2002,145(1),287.<br />
9 Amor Z, Bariou B, Mameri N, et al. <i>Desalination</i>,2001,133(3),215.<br />
10 Hu K, Dickson J M. <i>Journal of Membrane Science</i>,2006,279(1-2),529.<br />
11 Kemer B, Ozdes D, Gundogdu A, et al. <i>Journal of Hazardous Materials</i>,2009,168(2-3),888.<br />
12 Islam M, Patel R K. <i>Journal of Hazardous Materials</i>,2007,143(1-2),303.<br />
13 Meenakshi S, Sundaram C S, Sukumar R.<i> Journal of Hazardous Mate-rials</i>,2008,153(1-2),164.<br />
14 Tor A, Danaoglu N, Arslan G, et al.<i> Journal of Hazardous Materials</i>,2009,164(1),271.<br />
15 Jiménez-Reyes M, Solache-Ríos M. <i>Journal of Hazardous Materials</i>,2010,180(1-3),297.<br />
16 Bhatnagar A, Kumar E, Sillanp M.<i> Chemical Engineering Journal</i>,2011,171(3),811.<br />
17 Ghosh A, Chakrabarti S, Biswas K, et al. <i>Applied Surface Science</i>,2014,307,665.<br />
18 Tokunaga S, Haron M J, Wasay S A, et al. <i>International Journal of Environmental Studies</i>,1995,48(1),17.<br />
19 Zhang T, Li Q, Liu Y, et al. <i>Chemical Engineering Journal</i>,2011,168(2),665.<br />
20 Wang J, Xu W H, Chen L, et al. <i>Chemical Engineering Journal</i>,2013,231(17),198.<br />
21 Zhang S Y, Lu Y, Lin X Y, et al. <i>Applied Surface Science</i>,2014,303(5),1.<br />
22 Cheng J M, Meng X G, Jing C Y, et al. <i>Journal of Hazardous Materials</i>,2014,278,343.<br />
23 Yu Y, Wang C H, Guo X, et al. <i>Journal of Colloid & Interface Science</i>,2015,441,113.<br />
24 Sing K S W. <i>Pure & Applied Chemistry</i>,2009,57(4),603.<br />
25 Nazari M, Halladj R. <i>Journal of the Taiwan Institute of Chemical Engineers</i>,2014,45(5),2518.<br />
26 Chen Y, Zhang L, Liu Z, et al. <i>Hans Journal of Chemical Engineering and Technology</i>,2017,7(6),275(in Chinese).<br />
陈越,张力,刘铸,等.化学工程与技术,2017,7(6),275.<br />
27 Hou H, Xie Y, Yang Q. <i>Food Research & Development</i>,2005,16(16),741.<br />
28 Chen Y M, Wang M K, Huang P M, et al. <i>Geoderma</i>,2009,152(3-4),296.<br />
29 Viswanathan N, Meenakshi S. <i>Journal of Colloid & Interface Science</i>,2008,322(2),375.<br />
30 Brito A, Borges M E, Garín M, et al. <i>Energy Fuels</i>,2009,23(6),2952.<br />
31 Sundaram C S, Viswanathan N, Meenakshi S. <i>Journal of Hazardous Materials</i>,2009,163(2-3),618.<br />
32 Kang J X, Li B, Song J, et al. <i>Chemical Engineering Journal</i>,2011,166(2),765.<br />
33 Sugi Y, Kubota Y, Komura K, et al. <i>Applied Catalysis A General</i>,2006,299(1),157.<br />
34 Yang L J, Liu X Y, Jiang X, et al. <i>Chinese Journal of Applied Chemistry</i>,2012,29(11),1278(in Chinese).<br />
杨丽君,刘雪岩,姜鑫,等.应用化学,2012,29(11),1278.<br />
35 Tang Y L, Guan X H, Su T Z, et al. <i>Colloids & Surfaces A Physicoche-mical & Engineering Aspects</i>,2009,337(1-3),33.<br />
36 Sun X L, Zeng Q X, Feng C G, et al. <i>Journal of Functional Materials</i>,2009,40(10),1734(in Chinese).<br />
孙小莉,曾庆轩,冯长根,等.功能材料,2009,40(10),1734.<br />
37 Pandey N. Removal efficiency of fluoride by La induced Zr-phosphate po-rous material. ’s thesis, National Institute of Technology, lndia,2012.<br />
38 Hun Z Y, Tang S Y, Wang J, et al. <i>Journal of Henan Chemical Industry</i>,2011,19,36(in Chinese).<br />
胡之阳,唐思远,王静,等.河南化工,2011(19),36.<br />
39 Zhang S Y, Lu Y, Lin X Y, et al. <i>Applied Surface Science</i>,2014,303(5),1.<br />
40 Viswanathan N, Meenakshi S. <i>Journal of Colloid & Interface Science</i>,2008,322(2),375.<br />
41 Chen H H, Huang L M, Wu H F, et al. <i>Journal of Environment and Health</i>,2010,27(10),868(in Chinese).<br />
陈红红,黄丽玫,毋福海,等.环境与健康杂志,2010,27(10),868.<br />
42 Teutli-Sequeira A, Solache-Ríos M, Martínez-Miranda V, et al. <i>Journal of Colloid & Interface Science</i>,2014,418,254.<br />
43 Kumar E, Bhatnagar A, Kumar U, et al. <i>Journal of Hazardous Mate-rials</i>,2011,186(2-3),1042.<br />
44 Viswanathan N, Meenakshi S. <i>Applied Clay Science</i>,2010,48(4),607.<br />
45 Zhao X L, Wang J M, Wu F C, et al. <i>Journal of Hazardous Materials</i>,2010,173(1-3),102.<br />
46 Bansiwal A, Pillewan P, Biniwale R B, et al. <i>Microporous & Mesoporous Materials</i>,2010,129(1),54.<br />
47 Rao C R N, Karthikeyan J. <i>Water Air & Soil Pollution</i>,2012,223(3),1101.<br />
48 Tripathy S S, Raichur A M. <i>Journal of Hazardous Materials</i>,2008,153(3),1043.
[1] 范舟, 黄泰愚, 刘建仪. 硫对镍基合金825(100)电子结构影响的密度泛函研究[J]. 材料导报, 2019, 33(z1): 332-336.
[2] 刘珊, 冯婷, 田薪成, 刘丹荣, 张悦, 李宇亮. 海藻酸钠-水合二氧化锰功能球对Cu(Ⅱ)的吸附性能研究[J]. 材料导报, 2019, 33(z1): 136-140.
[3] 关文学, 周键, 王三反, 李艳红. 等离子体技术接枝苯磺酸甜菜碱改性对离子交换膜电阻的影响[J]. 材料导报, 2019, 33(z1): 462-465.
[4] 柴凡超, 常树全, 王国辉, 姚初请, 戴耀东. 辐射改性对铅/铜高分子辐射屏蔽材料性能的影响[J]. 材料导报, 2019, 33(z1): 444-447.
[5] 侯珊, 刘向春. 新型光催化剂钨酸锌的制备及性能改性研究进展[J]. 材料导报, 2019, 33(9): 1541-1549.
[6] 韦学玉, 杨晓凡, 白炳莲, 徐晓平, 李济源, 刘志刚. 对氟离子呈现状态和比色响应的有机凝胶的研究进展[J]. 材料导报, 2019, 33(9): 1583-1594.
[7] 秦小凤, 曹嘉真, 汪小莉, 张贤明, 吕晓书. 纳米零价铁优化体系及其在环境中的应用研究进展[J]. 材料导报, 2019, 33(9): 1550-1557.
[8] 姜德彬, 袁云松, 吴俊书, 杜玉成, 王金淑, 张育新. 硅藻土基复合材料在能源与环境领域的应用进展[J]. 材料导报, 2019, 33(9): 1483-1489.
[9] 郑云武, 陶磊, 康佳, 黄元波, 刘灿, 郑志锋. 不同原料烘焙炭的理化特性及对亚甲基蓝的吸附性能[J]. 材料导报, 2019, 33(8): 1276-1284.
[10] 臧文洁, 郭丽萍, 曹园章, 张健, 薛晓丽. 内掺氯离子与硫酸根离子在水泥净浆中的交互作用[J]. 材料导报, 2019, 33(8): 1317-1321.
[11] 谢婉晨, 李建三. 木质素磺酸钠在混凝土模拟孔隙液中对碳钢的缓蚀与吸附作用[J]. 材料导报, 2019, 33(8): 1401-1405.
[12] 李芮, 施宇震, 宁平, 谷俊杰, 关清卿, 耿瑞文, 孟凡凡. 改性活性炭吸附甲苯废气的研究进展[J]. 材料导报, 2019, 33(7): 1133-1140.
[13] 王岚, 李冀, 桂婉妹. 表面活性剂对温拌胶粉改性沥青高低温性能的影响[J]. 材料导报, 2019, 33(6): 986-990.
[14] 张迪, 杨迪, 徐翠, 周日宇, 李浩, 李靖, 王朋. 还原氧化石墨烯高效吸附双酚F的机理研究[J]. 材料导报, 2019, 33(6): 954-959.
[15] 张旭昀, 王文泉, 郭斌, 郑冰洁, 吴戆, 王勇. CaCO3在Fe(100)表面成垢机制的第一性原理研究[J]. 材料导报, 2019, 33(6): 965-969.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed