Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (3): 483-495    https://doi.org/10.11896/j.issn.1005-023X.2018.03.020
     材料综述 |
基于分子尺度的沥青材料设计
周新星1,吴少鹏2,张翛1,刘全涛2,徐松3,王帅1
1 山西省交通科学研究院黄土地区公路建设与养护技术交通行业重点实验室,太原 030006
2 武汉理工大学硅酸盐建筑材料国家重点实验室,武汉 430070
3 福州大学土木工程学院,福州 350103
Molecular-scale Design of Asphalt Materials
Xinxing ZHOU1,Shaopeng WU2,Xiao ZHANG1,Quantao LIU2,Song XU3,Shuai WANG1
1 Key Laboratory of Highway Construction and Maintenance in Loess Region, Shanxi Transportation Research Institute,Taiyuan 030006
2 State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology,Wuhan 430070
3 College of Civil Engineering, Fuzhou University, Fuzhou 350103
下载:  全 文 ( PDF ) ( 2178KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 

基于分子尺度的沥青材料设计是指利用多尺度分子模拟预测沥青材料的性能,指导制备符合高性能要求的沥青材料。分子尺度的设计方法主要有量子力学方法、蒙特卡洛方法和分子动力学方法。总结了沥青质模型、沥青模型、量子力学和分子模拟在沥青材料性能预测和设计中的应用,重点介绍了改性沥青材料常用物理力学性质的模拟计算方法及相关研究成果。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周新星
吴少鹏
张翛
刘全涛
徐松
王帅
关键词:  分子尺度  沥青  材料设计  分子模型  性能预测    
Abstract: 

The cardinal issue of molecular-scale design of asphalt materials is the properties prediction via multi-scaled molecular simulation which consequently provide guidance for developing modified asphalt with certain performance. Main methodologies of the molecular-scale design include quantum-mechanical methods, Monte Carlo methods, and molecular dynamics simulations. This review provides a conclusion on the material design, asphaltene models, bitumen models, and the application of quantum mechanics and molecular simulation. It focuses on simulation and calculation methods for the commonly used physical and mechanical properties of modified asphalt materials, and the relevant researches.

Key words:  molecular scale    asphalt    materials design    molecular model    properties prediction
               出版日期:  2018-02-10      发布日期:  2018-02-10
ZTFLH:  TU528.42  
基金资助: 国家自然科学基金(51308329);山西省重点研发基金-国际合作项目(201603D421027);山西省交通运输厅科技项目(2017-1-16)
作者简介:  作者简介:周新星:男,1990年生,硕士,助理工程师,研究方向为沥青基道路材料 E-mail: zxx09432338@whut.edu.cn
引用本文:    
周新星,吴少鹏,张翛,刘全涛,徐松,王帅. 基于分子尺度的沥青材料设计[J]. 《材料导报》期刊社, 2018, 32(3): 483-495.
Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials. Materials Reports, 2018, 32(3): 483-495.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.03.020  或          http://www.mater-rep.com/CN/Y2018/V32/I3/483
图1  沥青质模型:(a)Hierarchical 模型;(b)Groenzin和Mullins模型;(c)改进的Yen模型;(d)沥青质纳米尺度模型
图2  Rogel的12个沥青质模型
图3  沥青质代表性平均分子结构模型
图4  (a)Kuznicki的四个沥青质模型;(b)Artok 沥青质模型;(c)Derek沥青质模型;(d)Khafji沥青质模型
图5  Jennings提出的八种沥青模型
图6  (a)沥青三维非晶态晶胞模型;(b)线性SBS改性沥青三维模型
图7  沥青四组分模型:(a)沥青质;(b)环烷芳香分;(c)极性芳香分;(d)饱和分
图8  (a)实验和蒙特卡洛模拟下密度与温度的关系曲线;(b)沥青质1(C64H52S2)和沥青质2(C72H98S)的密度与温度的关系曲线
图9  沥青、碳纳米管改性沥青及石墨烯改性沥青的(a)密度-温度曲线和(b)能量-温度曲线[61](电子版为彩图)
Type Etotal Esurface Easphalt Einterface
Basalt concrete
Steel slag concrete
Andesite concrete
34 635.8
30 811
31 107.8
-214.3
-457.5
-225.2
17 135.8
115 362
15 610.4
-17 714.3
84 093.5
-15 722.6
表1  沥青混合料的界面粘附能(kJ/mol)
Temperature/K D /(10-8 m·s-2) Relax time/ps
255.15
298.15
333.15
408.15
436.15
3.292
4.608
5.553
5.980
6.247
2.991
0.479
0.341
0.291
0.162
表2  不同温度下沥青质的扩散系数和松弛时间
图10  沥青质相互排列的三种模式
δ1 δs δexp
Asphaltene 18.4314 20—22
Toluene 18.4044 18.3
Benzene 18.8078 18.7
Pyridine 21.2766 21.7
n-pentane 14.3731 14.4
n-hexane 14.9379 14.9
n-heptane 15.3088 15.3
δ2 δD δP δH
Crude oil 17.7 4 0.6
Asphalt 18.4 3.9 3.6
Asphaltene 19.6 3.4 4.4
Maltene 17.7 5.8 2.5
Polystyrene 18.5 4.5 2.9
Docosane 15.85 0 0
Dimethylnaphthalene 18.8 0 0
4-ethyl-dibenzothiophene 21.1 1.6 6
3-pentylthiophene 18.9 1.25 2.6
7,8-benzoquinoline 19.5 3.7 5.7
Methylbenzo cyclohexane 20.4 0.49 0
表3  Hildebrand 和Hansen溶解度参数(MPa1/2)
Asphalt system Tc(docosane) Tc(dimethylnaphthalene)
443.15 K
400 K
358.15 K
298.15 K
0.048
0.21
147.2
182.8
0.004 7
0.011 9
0.215
1.934
表4  二十二烷和二甲基萘分子的松弛时间(ns)
图11  不同生物油添加量再生沥青的回转半径[86]
1 Fu H, Xie L, Dou D , et al. Storage stability and compatibility of asphalt binder modified by SBS graft co-polymer[J]. Construction & Building Materials, 2007,21:1528.
2 Wei J, Liu Z, Zhang Y . Rheological properties of amorphous poly alpha olefin (APAO) modified asphalt binders[J]. Construction & Building Materials, 2013,48:533.
3 Zhou X, Zhang G, Liu R , et al. Molecular simulations of anti-aging mechanisms on Nano-LDHs modified asphalt[J]. Key Engineering Materials, 2014,599:198.
4 Zhou X, Wu S, Liu Q , et al. Effect of surface active agents on the rheological properties and solubility of LDHs modified asphalt[J]. Materials Research Innovations, 2015,19:972.
5 Greenfield M L . Molecular modelling and simulation of asphaltenes and bituminous materials[J]. International Journal of Pavement Engineering, 2011,12:325.
6 Boek E S, Yakovlev D S, Headen T F . Quantitative molecular representation of asphaltenes and molecular dynamics simulation of their aggregation[J]. Energy Fuels, 2009,23:1209.
7 Pan T, Yu Q , Stephen. Quantum-chemistry based study of beech-wood lignin as an antioxidant of petroleum asphalt[J]. Journal of Materials in Civil Engineering, 2013,10:1477.
8 Allen M P, Tildesley D J. Computer simulation of liquids[M]. New York: Oxford University Press, 1989.
9 Zhang L, Greenfield M L . Analyzing properties of model asphalts using molecular simulation[J]. Energy Fuels, 2007,21:1712.
10 Zhang L, Greenfield M L . Effects of polymer modification on pro-perties and micro-structure of model asphalt systems[J]. Energy Fuels, 2008,22:3363.
11 Zhang L, Greenfield M L . Molecular orientation in model asphalts using molecular simulation[J]. Energy Fuels, 2007,21:1102.
12 Groenzin H G, Mullins O C . Molecular size and structure of asphal-tenes from various sources[J]. Energy Fuels, 2000,14(3):677.
13 Li D D, Greenfield M L . Chemical compositions of improved model asphalt systems for molecular simulations[J]. Fuel, 2014,115:347.
14 Groenzin H, Mullins O . Molecular size and structure of asphaltenes[J]. Liquid Fuels Technology, 2001,19:219.
15 Zhang L Q, Greenfield M L . Final report-developing model ashpalt systems using molecular simulation[R]. Rhode Island:University of Rhode Island, 2009.
16 Jian C, Tang T, Bhattacharjee S . Probing the effect of side-chain length on the aggregation of a model asphaltene using molecular dynamics simulations[J]. Energy Fuels, 2013,27:2057.
17 Yao H, Dai Q, You Z . Chemo-physical analysis and molecular dynamics (MD) simulation of moisture susceptibility of nano hydra-ted lime modified asphalt mixtures[J]. Construction & Building Materials, 2015,101(1):536.
18 Pomerantz A E, Seifert D J, Bake K D , et al. Sulfur chemistry of asphaltenes from a highly compositionally graded oil column[J]. Energy Fuels, 2013,27:4604.
19 Zuo J Y, Mullins O C, Freed D , et al. Advances in the Flory-Huggins-Zuo equation of state for asphaltene gradients and formation evaluation[J]. Energy Fuels, 2013,27:1722.
20 Pomerantz A E, Mullins O C, Paul G , et al. Orbitrap mass spectrometry: A proposal for routine analysis of nonvolatile components of petroleum[J]. Energy Fuels, 2011,25:3077.
21 Takanohashi T, Sato S, Saito I , et al. Molecular dynamics simulation of the heat-induced relaxation of asphaltene aggregates[J]. Energy Fuels, 2003,17:135.
22 Lowden L J, Chandler D . Theory of inter-molecular pair correlations for molecular liquids. Applications to the liquids carbon tetrachloride, carbon disulfide, carbon diselenide, and benzene[J]. Chem-Inform, 1975,6(13):5228.
23 Evans D J, Watts R O . On the structure of liquid benzene[J]. Molecular Physics, 1976,32:93.
24 Brandt H C A, Hendriks E M, Michels M A J , et al. Thermodynamic modeling of asphaltene stacking[J]. The Journal of Physical Chemistry, 1995,99:10430.
25 Pacheco-Sánchez J H, Zaragoza I P, Martínez-Magadán J M . Asphaltene aggregation under vacuum at different temperatures by molecular dynamics[J]. Energy Fuels, 2003,17:1346.
26 Forte E, Taylor S E . Thermodynamic modelling of asphaltene precipitation and related phenomena[J]. Advance Colloid Interface, 2011,12:621.
27 Mullins O C . The modified yen model[J]. Energy Fuels, 2010,24:179.
28 Mullins O C, Sheu E Y. Structures and dynamics of asphaltenes[M]. New York: Plenum Press, 1998.
29 Mullins O C, Sheu E Y, Hammami A , et al. Asphaltenes, heavy oils, and petroleomics[M]. New York:Springer, 2007.
30 Mullins O C, Sabbah H, Eyssautier J , et al. Advances in asphaltene science and the yen-mullins model[J]. Energy Fuels, 2012,26:3986.
31 Rogel E, Carbognani L . Density estimation of asphaltenes using molecular dynamics simulations[J]. Energy Fuels, 2003,17:378.
32 Siskin M, Kelemen S R, Eppig C P , et al. Asphaltene molecular structure and chemical influences on the morphology of coke produced in delayed coking[J]. Energy Fuels, 2006,20:1227.
33 Carauta A N M, Correia J C G, Seidl P R , et al. Conformational search and dimerization study of average structures of asphaltenes[J]. Journal of Molecular Structure Theochem, 2005,755:1.
34 Kuznicki T, Masliyah J H . Aggregation and partitioning of model asphaltenes at toluene-water interfaces: Molecular dynamics simulations[J]. Energy Fuels, 2009,10:5027.
35 Kowalewski I, Vandenbroucke M, Huc A Y , et al. Preliminary results on molecular modeling of asphaltenes using structure elucidation programs in conjunction with molecular simulation programs[J]. Energy Fuels, 1996,10:97.
36 Artok L Y, Su Y . Structure and Reactivity of petroleum derived asphaltene[J]. Energy Fuels, 1999,3:287.
37 Trauth D M . Representation of the molecular structure of petroleum resid through characterization and Monte Carlo modeling[J]. Energy Fuels, 1994,54:576.
38 Polacco G, Stastna J, Biondi D , et al. Rheology of asphalts modified with glycidylmethacrylate functionalized polymers[J]. Journal of Colloid & Interface Science, 2004,280:366.
39 Ouyang C, Wang S, Zhang Y , et al. Thermo-rheological properties and storage stability of SEBS/kaolinite clay compound modified asphalts[J]. European Polymer Journal, 2006,42:446.
40 Jennings P W, Pribanic J A, Desando M A , et al. Binder characte-rization and evaluation by nuclear magnetic resonance spectroscopy[M]. Washington,DC:Strategic Highway Research Program,National Research Council, 1993.
41 Bhasin A, Bommavaram R, Greenfield M , et al. Use of molecular dynamics to investigate self-healing mechanisms in asphalt binders[J]. Journal of Materials in Civil Engineering, 2010,23:485.
42 Cong Y F, Liao K J, Zhai Y C . Application of molecular simulation for study of SBS modified asphalt[J]. Journal of Chemical Industry and Engineering, 2005,56(5):769(in Chinese).
42 丛玉凤, 廖克俭, 翟玉春 . 分子模拟在SBS改性沥青中的应用[J]. 化工学报, 2005,56(5):769.
43 Zhang L, Greenfield M L . Rotational relaxation times of individual compounds with simulations of molecular asphalt models[J]. The Journal of Chemical Physics, 2010,18:4502.
44 Alvarez-Ramirez F, Ramirez-Jaramillo E . Calculation of the interaction potential curve between asphaltene-asphaltene, asphaltene-resin, and resin-resin systems using density functional theory[J]. Academic Radiology, 2006,5(9):S432.
45 Zhou X, Wu S, Liu G , et al. Molecular simulations and experimental evaluation on the curing of epoxy bitumen[J]. Materials & Structures, 2016,49:241.
46 Stoyanov S R, Gusarov S . Multiscale modelling of asphaltene dis-aggregation[J]. Molecular Simulation, 2008,34(10-15):953.
47 Stoyanov S R, Gusarov S . Modelling of bitumen fragment adsorption on Cu + and Ag + exchanged zeolite nanoparticles [J]. Molecular Simulation, 2008,34(10-15):943.
48 Schmets A J , et al. First-principles investigation of the multiple phases in bituminous materials: The case of asphaltene stacking[M]. Leiden, NL:CRC Press, 2009.
49 Ruiz-Morales Y, Mullins O C . Polycyclic aromatic hydrocarbons of asphaltenes analyzed by molecular orbital calculations with optical spectroscopy[J]. Energy Fuels, 2007,21:256.
50 Ruiz-Morales Y, Wu X, Mullins O C . Electronic absorption edge of crude oils and asphaltenes analyzed by molecular orbital calculations with optical spectroscopy[J]. Energy Fuels, 2007,21:944.
51 Pan T . A first-principles based chemophysical environment for studying lignins as an asphalt antioxidant[J]. Construction & Building Materials, 2012,36:654.
52 Carauta A N M, Seidl P R , Chrisman E C A N, et al. Modeling solvent effects on asphaltene dimers[J]. Energy Fuels, 2005,19:1245.
53 Neurock M, Klein M T . Chapter 4 Monte Carlo simulation of asphaltene structure, reactivity and reaction pathways[M] ∥Deve-lopments in Petroleum Science. Elsevier Science & Technology, 2000: 59.
54 Boek E S, Wilson A D, Padding J T , et al. Multi-scale simulation and experimental studies of asphaltene aggregation and deposition in capillary flow[J]. Energy Fuels, 2010,24:2361.
55 Sun B, Zhou X X . Diffusion and rheological properties of asphalt modified by bio-oil regenerant derived from waste wood[J]. Journal of Materials in Civil Engineering, 2018,30(2):1.
56 Lu Y, Wang L. Molecular dynamics simulation to characterize asphalt-aggregate interfaces[M]. Frost, ed.IOS Press, 2010.
57 Lu Y, Wang L . Nanoscale modelling of mechanical properties of asphalt-aggregate interface under tensile loading[J]. International Journal of Pavement Engineering, 2010,11:393.
58 Headen T F, Boek E S . Potential of mean force calculation from molecular dynamics simulation of asphaltene molecules on a calcite surface[J]. Energy Fuels, 2010,24:499.
59 Robertson R E, Branthaver J F, Harnsberger P M , et al. Fundamental properties of asphalts and modified asphalts, Volume 1: Interpretive report[J]. Asphalt, 2001,32:99.
60 Tarefder R A, Arisa I . Molecular dynamic simulations for determining change in thermodynamic properties of asphaltene and resin because of aging[J]. Energy Fuels, 2011,25:2211.
61 Zhou X, Zhang X, Xu S . Evaluation of thermo-mechanical properties of graphene/carbon-nanotubes modified asphalt with molecular si-mulation[J]. Molecular Simulation, 2017,43:312.
62 Jeyranpour F, Alahyarizadeh G, Minuchehr H . The Thermo-mechanical properties estimation of fullerene-reinforced resin epoxy composites by molecular dynamics simulation—A comparative study[J]. Polymer, 2016,88:9.
63 Zhao Z, Wu S, Zhou X . Molecular simulations of properties changes on nano-layered double hydroxides modified bitumen[J]. Materials Research Innovations, 2015,19:971.
64 Mahdizadeh S J, Goharshadi E K, Akhlamadi G . Thermo-mechanical properties of boron nitride nanoribbons: A molecular dynamics simulation study[J]. Journal of Molecular Graphics & Modelling, 2016,68:1.
65 Xu P . Interface behaviors of asphalt and aggregates based on molecule dynamic simulations[D]. Xi’an:Chang’an University, 2013(in Chinese).
65 徐霈 . 基于分子动力学的沥青与集料界面行为虚拟实验研究[D]. 西安:长安大学, 2013.
66 Wu S, Mo L, Shui Z , et al. Investigation of the conductivity of asphalt concrete containing conductive fillers[J]. Carbon, 2005,43(7):1358.
67 Zhou Y, Li P L . Research on asphalt self-healing property based on molecular modeling technique[J]. Shanxi Architecture, 2013,39(6):83(in Chinese).
67 周艳, 李佩林 . 基于分子模拟技术的沥青自愈合性能研究[J]. 山西建筑, 2013,39(6):83.
68 Sun D, Lin T, Zhu X , et al. Indices for self-healing performance assessments based on molecular dynamics simulation of asphalt bin-ders[J]. Computational Materials Science, 2016,114:86.
69 John A. Dean M T. Lange’s Handbook of Chemistry[M]. New York:McGraw-Hill, 1985.
70 Ding Y J . Study on chemical structure characteristic of asphalt using molecular simulation[D]. Chongqing:Chongqing Jiaotong University, 2013(in Chinese).
70 丁勇杰 . 基于分子模拟技术的沥青化学结构特征研究[D]. 重庆:重庆交通大学, 2013.
71 Muller-Plathe F . Scale-hopping in computer simulations of polymers[J]. Soft Materials, 2003,1:1.
72 Murgich J . Molecular simulation and the aggregation of the heavy fractions in crude oils[J]. Molecular Simulation, 2003,29:451.
73 Aguilera-Mercado B, Herdes C, Murgich J , et al. Mesoscopic simulation of aggregation of asphaltene and resin molecules in crude oils[J]. Energy Fuels, 2006,20:327.
74 Cui S T, Cummings P T, Cochran H D . The calculation of viscosity of liquid n-decane and n-hexadecane by the Green-Kubo method[J]. Molecular Physics, 1998,93:117.
75 Gordon P A . Characterizing isoparaffin transport properties with Stokes-Einstein relationships[J]. Industrial & Engineering Chemistry Research, 2003,42:7025.
76 Mondello M, Grest G S . Viscosity calculations of n-alkanes by equilibrium molecular dynamics[J]. Journal of Chemical Physics, 1997,106:9327.
77 Vicente L, Soto C, Pacheco-Snchez H , et al. Application of molecular simulation to calculate miscibility of a model asphaltene molecule[J]. Fluid Phase Equilibria, 2006,239:100.
78 Hildebrand J, Scott R L . The solubility of nonelectrolytes[M]. Third ed. New York: Reinhold, 1950.
79 Hansen C M. Hansen solubility parameters-A user’s handbook[M]. Boca Raton: CRC Press, 2000.
80 Hansen C M . Aspects of solubility, surfaces, and diffusion in polymers[J]. Progress in Organic Coatings, 2004,1:55.
81 Hansen C M, Smith A L . Using Hansen solubility parameters to correlate solubility of C60 fullerene in organic solvents and in polymers[J]. Carbon, 2004,42:1591.
82 Hansen C M . 50 Years with solubility parameters-past and future[J]. Progress in Organic Coatings, 2004,51(1):77.
83 Barton A F M . Solubility parameters[J]. Chemical Reviews, 1975,75:731.
84 Wang S J, Zheng Y C, Ding Y J . Based on molecular simulation and evaluation on solubility of mono connected SBS and asphalt[J].Highways and Automotive Applications, 2013(1):100(in Chinese).
84 王淑娟, 郑永昌, 丁勇杰 . 基于分子模拟技术的单体接枝SBS与沥青相容性研究[J].公路与汽运, 2013(1):100.
85 Cui S T, Cummings P T, Cochran H D . Multiple time step non-equilibrium molecular dynamics simulation of the rheological properties of liquid n-decane[J]. The Journal of Chemical Physics, 1996,104(1):255.
86 Sun B, Zhou X X . Diffusion and rheological properties of asphalt modified by bio-oil regenerant derived from waste wood[J]. Journal of Materials in Civil Engineering, 2017,119:1.
[1] 王泳丹, 刘子铭, 郝培文. 综论沥青的疲劳损伤自愈合行为:理论研究,评价方法,影响因素,数值模拟[J]. 材料导报, 2019, 33(9): 1517-1525.
[2] 王岚, 李冀, 桂婉妹. 表面活性剂对温拌胶粉改性沥青高低温性能的影响[J]. 材料导报, 2019, 33(6): 986-990.
[3] 李微, 韩森, 黄啟波, 姚腾飞, 徐鸥明. 细粒式薄表层沥青混合料中粗集料的骨架特性[J]. 材料导报, 2019, 33(4): 617-624.
[4] 朱亚明, 赵春雷, 刘献, 赵雪飞, 高丽娟, 程俊霞. 煤沥青中甲苯可溶物的基础物性研究[J]. 材料导报, 2019, 33(2): 368-372.
[5] 吕政桦, 申爱琴, 李悦, 郭寅川, 喻沐阳. 基于遗传优化的乳化沥青冷再生混合料的疲劳性能及机理研究[J]. 材料导报, 2019, 33(16): 2704-2709.
[6] 陈玉静, 沙爱民, 胡魁, 刘状壮, 曹世豪, 张华. 青藏地区路用遮热涂层的制备及性能[J]. 材料导报, 2019, 33(14): 2319-2325.
[7] 张宏, 刘新, 乔志. 沥青胶浆粘度及流变特性的影响因素研究[J]. 材料导报, 2019, 33(14): 2381-2385.
[8] 王岚, 崔世超, 常春清. 基于流变学与黏弹性理论的温拌胶粉改性沥青的高温性能研究[J]. 材料导报, 2019, 33(14): 2386-2391.
[9] 陈谦, 王朝辉, 樊振通, 侯荣国, 陈姣. 浇注式导电沥青混凝土组合结构热传导效应预估模型[J]. 材料导报, 2019, 33(10): 1659-1665.
[10] 李 款,潘友强,张 辉,陈李峰,张 健. 钢桥面铺装用环氧沥青相容性研究进展[J]. 《材料导报》期刊社, 2018, 32(9): 1534-1540.
[11] 谢佳乐, 杨萍萍, 李长明. 稳定高效α-Fe2O3光电化学水分解——合理的材料设计和载流子动力学[J]. 《材料导报》期刊社, 2018, 32(7): 1037-1056.
[12] 宋昊, 谢友均, 龙广成. 水泥乳化沥青砂浆研究进展[J]. 《材料导报》期刊社, 2018, 32(5): 836-846.
[13] 朱建勇, 何兆益. 沥青胶结料自愈合研究进展[J]. 《材料导报》期刊社, 2018, 32(5): 847-854.
[14] 王朝辉, 韩晓霞, 陈姣, 侯荣国, 郑少鹏. 浇注式导电沥青混凝土传导热效果[J]. 材料导报, 2018, 32(22): 3891-3899.
[15] 马晓燕, 陈华鑫, 张星宇, 邢明亮, 杨平文, 王兆力. SBS改性沥青低温流变性与原材料性能相关性研究[J]. 材料导报, 2018, 32(22): 3885-3890.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed