Please wait a minute...
材料导报  2018, Vol. 32 Issue (15): 2626-2634    https://doi.org/10.11896/j.issn.1005-023X.2018.15.013
  无机非金属及其复合材料 |
废旧玻璃在沥青混合料中的应用研究进展
王泳丹1, 刘子铭2, 郝培文1
1 长安大学公路学院,西安 710064;
2 长安大学材料科学与工程学院,西安 710064
Review on Asphalt Mixture Incorporating Waste Glass
WANG Yongdan1, LIU Ziming2, HAO Peiwen1
1 School of Highway, Chang’an University, Xi’an 710064;
2 School of Materials Science and Engineering, Chang’an University, Xi’an 710064
下载:  全 文 ( PDF ) ( 2090KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年我国公路建设迅速发展,2016年高速公路总里程达到13.10万公里,其中沥青路面占95%以上。沥青路面的建设使沥青和石料等自然资源大量消耗,给环境资源带来较大负担。为缓解道路建设对天然石料的消耗,国内外学者开展了固体废弃物在沥青混凝土中的回收再利用研究。与此同时,鉴于废旧玻璃的不断增多和处理方法的缺陷,寻求废旧玻璃的有效处理途径已是当务之急。利用废旧玻璃这种常见生活及工业废弃物替代部分天然石料进行沥青混凝土的制备则是有效的解决方法之一。已有研究表明,废旧玻璃破碎后具有耐磨、抗滑、反光、渗水性强等特性,替代部分集料制备废旧玻璃沥青混凝土作为面层,可一定程度改善路面耐磨、抗滑、透水等路用性能。
当前,废旧玻璃在沥青混凝土中的应用面临一系列问题。废旧玻璃材料质脆,主要成分SiO2为亲水性材料,掺入后沥青混凝土的强度及耐久性受到一定程度的影响。废旧玻璃来源丰富,多为生活垃圾,其回收、筛选、破碎等处理过程复杂,在我国回收利用率较低,且道路工程中对原材料杂质含量要求较高,这就抬高了废旧玻璃回收利用的技术要求及成本
基于以上问题,研究者对废旧玻璃的工程特性和材料组成以及废旧玻璃沥青混凝土的路用性能和力学特性开展了进一步研究。研究结果表明,玻璃颗粒尺寸、掺量保持在一定范围内,在一定掺入方式下,沥青混凝土强度及路用特性均满足规范要求。加入抗剥落剂或使用改性沥青,废旧玻璃沥青混凝土的水稳定性明显提升。混合料疲劳寿命不易受废旧玻璃集料影响,在一定掺量及颗粒尺寸下,抗疲劳特性较好;蠕变特性与普通沥青混合料相似,在一定应力与温度范围内,蠕变变形小于普通沥青混合料,且可用常见流变模型来描述其永久变形特性。
本文归纳总结了废旧玻璃材料作为沥青混合料集料的物理力学性能,废旧玻璃沥青混合料的材料组成设计方法,废旧玻璃对沥青混合料的路用性能和表面特性的影响规律,并展望了该领域未来的发展趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王泳丹
刘子铭
郝培文
关键词:  道路工程  废旧玻璃  沥青混合料  组成设计  路用性能    
Abstract: The highway construction in China has been developing rapidly in recent years, as the highway mileage in 2016 reaches 131 000 kilometers, in which 95% are asphalt pavement. Asphalt pavement construction has consumed large amount of natural resources such as asphalt and natural stone, bringing a huge burden to environment. In order to decrease consumption of natural stone in road construction, research on the reuse of solid waste in asphalt concrete has been carried out worldwide. Waste glass is one of the common and continuously increasing solid wastes in daily life and industry, and seeking effective reutilization approach for waste glass is of great urgency. Thus the substitution of waste glass for partial natural stone in the production of asphalt concrete can be a potential scheme to solve both of the above thorny problems. It has been shown that crushed waste glass possesses properties such as wear resistance, slide resistance, light reflection and permeability, and can improve road performance of asphalt pavement effectively when substituting for partial natural aggregate to form surface layer concrete.
However, the use of waste glass in asphalt concrete still faces several obstacles. As a brittle substance, waste glass mainly consists of hydrophilic SiO2, and will thereby affect strength and durability of asphalt concrete. Besides, most of waste glass originates from living garbage, and its gathering, sifting and crushing process is complicated and primitive in China. Hence the rigorous requirement for raw material’s impurity content with road engineering elevates the technological threshold and cost for the reutilization of waste glass in asphalt pavement.
These problems has prompted further investigations on engineering characteristics and composition of waste glass, and road performance and mechanical properties of asphalt concrete incorporating waste glass. And the strength and road performance of asphalt concrete with appropriate waste glass particle size & content and mixing method can attain the standard requirement. The use of anti-stripping agent or modified asphalt can improve significantly moisture susceptibility of asphalt concrete incorporating waste glass. Fatigue life of the waste glass-contained mixture is scarcely affected by glass aggregate within a certain range of amount and particle size. Moreover, the creep characteristic of the admixture incorporating waste glass is similar to ordinary asphalt mixture, and creep deformation at high temperature is smaller than ordinary asphalt mixture and coincides with rheological model such as Burgers model.
Based on the previous studies, this paper summarizes the physical and mechanical properties of waste glass serving as aggregate of asphalt admixture, the composition design methodology of asphalt mixture incorporating waste glass, as well as the influences of waste glass on engineering performance and surface features of the admixture as pavement surface layer. It also sketches out the future development trend.
Key words:  road engineering    waste glass    asphalt mixture    composition design    road performance
               出版日期:  2018-08-10      发布日期:  2018-08-09
ZTFLH:  U414.416  
基金资助: 国家自然科学基金(51278060;51478046)
通讯作者:  郝培文:通信作者,男,1967年生,教授,博士研究生导师,研究方向为路面结构与材料 E-mail:pwhao@chd.edu.cn   
作者简介:  王泳丹:女,1992年生,博士研究生,研究方向为路面结构与材料 E-mail:wangyongdan30@163.com
引用本文:    
王泳丹, 刘子铭, 郝培文. 废旧玻璃在沥青混合料中的应用研究进展[J]. 材料导报, 2018, 32(15): 2626-2634.
WANG Yongdan, LIU Ziming, HAO Peiwen. Review on Asphalt Mixture Incorporating Waste Glass. Materials Reports, 2018, 32(15): 2626-2634.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.15.013  或          http://www.mater-rep.com/CN/Y2018/V32/I15/2626
1 Xu M J. Recycle of waste glass at home and abroad[J].Development Guide to Building Materials,2007(1):51(in Chinese).
徐美君.国际国内废玻璃的回收与利用(上)[J].建材发展导向,2007(1):51.
2 Gao H, Liu N P. Research and prospect of application of recycled wastes in pavement of asphalt road[J].Technology of Highway and Transport,2012(2):31(in Chinese).
高惠,刘念平.回收废料用于沥青道路铺筑的研究与展望[J].公路交通技术,2012(2):31.
3 Circular economy vision[EB/OL].http:∥feve.org/about-glassvisions/industry/theme-over lay/.
4 Zai X. China renewable resources recycling industry development report 2017 from Commerce Department[J].China Resources Comprehensive Utilization,2017,35(4):8(in Chinese).
再协.商务部发布《中国再生资源回收行业发展报告2017》(摘要)[J].中国资源综合利用,2017,35(4):8.
5 Li Y L. Interpretation of statistical bulletin on highway traffic deve-lopment 2016[J].China Highway,2017(9):22(in Chinese).
李仪灵.数读2016年公路交通发展统计公报[J].中国公路,2017(9):22.
6 Reindl J. Reuse/recycling of glass cullet for non-container uses[R].Madison: Dane County Department of Public Works,2003.
7 Environmental Protection Agency. Study of the use of recycled pa-ving material[R].Washington: US Department of Transportation,1993.
8 Disfani M M, Arulrajah A, Bo M W. Fine recycled glass: A sustai-nable alternative to natural aggregates[J].International Journal of Geotechnical Engineering,2011,5:255.
9 Xue F L. Waste glass packaging containers for high quality recycling[J].China New Packaging,2007,22(3):35(in Chinese).
薛福连.废弃玻璃包装容器的高值回收利用[J].中国新包装,2007,22(3):35.
10 Disfani M M, Arulrajah A, Bo M W, et al. Environmental risks of using recycled crushed glass in road applications[J].Journal of Clea-ner Production,2012,20(1):170.
11 Developing specifications for recycled glass aggregate[R].Washington D C: Clean Washington Center,1996.
12 Preparation and placement of glassphalt, BP-GL4-02-02[R].Was-hington D C: Clean Washington Center,1996.
13 Bi L C, Shen A Q, Guo Y C. Effect of flakiness on high temperature perfor-mance of asphalt mixture[J].Highway,2011(7):212(in Chinese).
毕林昌,申爱琴,郭寅川.针片状颗粒含量对沥青混合料高温稳定性的影响[J].公路,2011(7):212.
14 Jamshidi A, Kurumisawa K, Nawa T, et al. Performance of pavements incorporating waste glass: The current state of the art[J].Renewable and Sustainable Energy Reviews,2016,64:211.
15 中华人民共和国建设部.地源热泵系统工程技术规范[M].北京:中国建筑工业出版社,2009.
16 Day D E, Schaffer. Glassphalt paving handbook[R]. Jefferson City: University of Missouri-Rolla,1989.
17 Arulrajah A, Disfani M M, Horpibulsuk S, et al. Physical properties and shear strength responses of recycled construction and demolition materials in unbound pavement base/subbase applications[J].Construction & Building Materials,2014,58(4):245.
18 Disfani M, Arulrajah A, Ali M, et al. Fine recycled glass: A sustai-nable alternative to natural aggregates[J].International Journal of Geotechnical Engineering,2011,5(3):255.
19 Arulrajah A, Ali M M Y, Disfani M M, et al. Geotechnical perfor-mance of recycled glass-waste rock blends in footpath bases[J].Journal of Materials in Civil Engineering,2013,25(5):653.
20 Malisch W R, Day D E, Wixson B G. Use of domestic waste glass for urban paving: Summary report[R].Ohio National Environmental Research Center, Office of Research and Development,U.S. Environmental Protection Agency,1975.
21 Androjic I, Dimter S. Properties of hot mix asphalt with substituted waste glass[J].Materials and Structures,2016,49:249.
22 Su N, Chen J S. Engineering properties of asphalt concrete made with recycled glass[J].Resources, Conservation and Recycling,2002,35:259.
23 Arabani M, Pedram M. Laboratory investigation of rutting and fatigue in glassphalt containing waste plastic bottles[J].Construction & Building Materials,2016,116:378.
24 Hewei L, Weidong H, Kun L, et al. Glasphalt mixtures’ perfor-mance research and analysis[C]∥Third International Conference on Transportation Engineering (ICTE). Washington,2011.
25 Airey G D, Collop A C, Thom N H. Mechanical performance of asphalt mixtures incorporating slag and glass secondary aggregates[C]∥Proceedings of the 8th Conference on Asphalt Pavements for Southern Africa (CAPSA’04). Sun City,2014.
26 Wu S, Yang W, Xue Y. Preparation and properties of glass-asphalt concrete[J].International Journal of Fatigue,2004,31(10):1598.
27 Shafabakhsh H G, Sajed Y. Investigation of dynamic behavior of hot mix asphalt containing waste materials; case study: Glass cullet[J].Case Studies in Costruction Materials,2014,1:96.
28 Éric Lachance-Tremblay, Perraton D, Vaillancourt M, et al. Degradation of asphalt mixtures with glass aggregates subjected to freeze-thaw cycles[J].Cold Regions Science & Technology,2017,141:8.
29 Abdelrahman M, Saboori A. Waste materials, in construction, utilization of[M].New York: The National Academies Press,2012.
30 Ziari H, Behbahani H, Kamboozia N, et al. New achievements on positive effects of nanotechnology zyco-soil on rutting resistance and stiffness modulus of glasphalt mix[J]. Construction & Building Materials,2015,101:752.
31 Wang F J, Wu H S, Yang J M, et al. The effect of waste glass gra-nule on the volume parameters of asphalt mixture[J].Journal of China & Foreign Highway,2014,34(5):248(in Chinese).
汪富杰,伍衡山,杨建明,等.废玻璃颗粒替代集料对沥青混合料体积参数的影响[J].中外公路,2014,34(5):248.
32 Chen F C, Li L H, Du J. Study on properties of asphalt mixture with waste glass[J].Journal of Building Materials,2006(2):239(in Chinese).
陈风晨,李立寒,鹃杜.废玻璃沥青混合料性能的试验研究[J].建筑材料学报,2006(2):239.
33 Li F. Study on influence of glass content and gradation on asphalt mixture[D].Hengyang: University of South China,2013(in Chinese).
李烽.玻璃掺量和颗粒级配对玻璃沥青混合料的影响研究[D].衡阳:南华大学,2013.
34 He Z, Sun H Y, Liang W Q, et al. Anti-stripping study of glass asphalt mixture[J].New Building Materials,2008,35(3):1(in Chinese).
何真,孙海燕,梁文泉,等.玻璃沥青混凝土的抗剥落性研究[J].新型建筑材料,2008,35(3):1.
35 Shi X L, Wang X C, Liu K. Highway tunnel reflective asphalt pavement[J].Journal of Chang’an University(Edition of Natural Science),2009(3):19(in Chinese).
史小丽,王选仓,刘昆.公路隧道反光沥青路面[J].长安大学学报:自然科学版,2009(3):19.
36 Chen Y Z. Waste glass for road drainage asphalt mixture is impact study[J].Journal of highway engineering,2015,40(2):299(in Chinese).
陈永志.废玻璃对排水沥青混合料路用性能影响研究[J].公路工程,2015,40(2):299.
37 李立寒,张南鹭,孙大权.道路工程材料[M].北京:人民交通出版社,2010.
38 Moreno-Navarro F, Perez-Martinez M, Martín-Marín J et al. Mechanical performance of asphalt mixes incorporating waste glass[J].Baltic Journal of Road Bridge Engineering,2015,10(3):8.
39 Xie Z X, Li D L, Han S, et al. Needle flake particle concentration affect the performance of asphalt mixture[J].Journal of Building Materials,2007,10(6):736(in Chinese).
谢兆星,李鼎乐,韩森,等.针片状颗粒含量对沥青混合料性能的影响[J].建筑材料学报,2007,10(6):736.
40 Sha A M, Lu X, Lin R Y. Reflective glass asphalt concrete road performance evaluation and performance study[J].Journal of Highway and Transportation Research and Development,2014(3):38(in Chinese).
沙爱民,卢欣,蔺瑞玉.玻璃沥青混凝土反光性能评价和路用性能研究[J].公路交通科技,2014(3):38.
41 交通部公路科学研究所.公路沥青路面施工技术规范[M].北京:人民交通出版社,2004.
42 Li W Y, Yan M. Mixed waste glass effect the performance of the asphalt concrete road analysis[J].Journal of Hunan Traffic Science and Technology,2014(1):29(in Chinese).
李万英,晏茂.掺废旧玻璃对沥青混凝土路用性能的影响分析[J].湖南交通科技,2014(1):29.
43 Éric Lachance-Tremblay, Vaillancourt M, Perraton D. Linear vis-coelastic properties, low temperature and fatigue performances of asphalt mixture with recycled glass[C]∥International Society for Asphalt Pavements 2016 Symposium. Jackson Hole,2016.
44 Hughes C S. Final report-feasibility of using recycled glass in asphalt, VTRC 90-R3[R].Virginia: Virginia Transportation Research Council,1990.
45 Tang B K. Glass beads instead of mineral powder on the influence of the asphalt mixture research[D].Hengyang: University of South China,2016(in Chinese).
唐斌凯.玻璃粉替代矿粉对沥青混合料的影响研究[D].衡阳:南华大学,2016.
46 Larsen D A. Feasibility of utilizing waste glass in pavements[R].Wethersfield: Connecticut Department of Transportation,1989.
47 Brasileiro L L, Matos J M E, Brasileiro L L, et al. Literature review: Reuse of construction and demolition waste in the construction industry[J].Ceramica,2015,61(358):178.
48 Arabani M. Effect of glass cullet on the improvement of the dynamic behaviour of asphalt concrete[J].Construction & Building Materials,2011,25(3):1181.
49 Tahmoorian F, Samali B, Tam V, et al. Evaluation of mechanical properties of recycled material for utilization in asphalt mixtures[J].Applied Sciences,2017,7(8):763.
50 Arabani M, Kamboozia N. The linear visco-elastic behaviour of glasphalt mixture under dynamic loading conditions[J].Construction & Building Materials,2013,41(2):594.
51 Éric LachanceTremblay, Vaillancourt M, Perraton D. Evaluation of the impact of recycled glass on asphalt mixture performances[J].Road Materials & Pavement Design,2015,17(3):600.
52 Lu P X, Xiao P, Lv Y. Basalt fiber asphalt mixture dynamic creep test[J].Journal of Jiangsu University(Edition of Natural Science),2015,36(4):480(in Chinese).
卢佩霞,肖鹏,吕阳.玄武岩纤维沥青混合料动态蠕变试验[J].江苏大学学报(自然科学版),2015,36(4):480.
53 穆霞英.蠕变力学[M].西安:西安交通大学出版社,1990.
54 Arabani M, Kamboozia N. New achievements in visco-elastoplastic constitutive model and temperature sensitivity of glasphalt[J].International Journal of Pavement Engineering,2014,15(9):810.
55 Behbahani H, Ziari H, Kamboozia N. Evaluation of the visco-elasto-plastic behavior of glasphalt mixtures through generalized and classic Burger’s models modification[J].Construction & Building Mate-rials,2016,118:36.
56 Arabani M, Jamshidi R, Sadeghnejad M. Using of 2D finite element modeling to predict the glasphalt mixture rutting behavior[J].Construction & Building Materials,2014,68:183.
57 Liu X L, Xue H. Mixed magnitude matching glass anti-sliding performance of asphalt concrete impact study[J].Science and Technology Innovation Herald,2010(7):10(in Chinese).
刘小龙,薛寒.玻璃掺量级配对玻璃沥青混凝土抗滑性能影响研究[J].科技创新导报,2010(7):10.
58 沙爱民.环保型路面材料与结构[M].北京:科学出版社,2012.
59 Murphy K H, West R C, Page G C. Evaluation of crushed glass in asphalt paving mixtures[R].Florida, United States: Florida Department of Transportation,1991.
60 Jiang H, Qu H H. Shards of glass characteristics of asphalt mixtures[J].Journal of Shandong Traffic Science and Technology,2003(3):68(in Chinese).
蒋灏,曲怀海.玻璃碎片沥青混合物的特性[J].山东交通科技,2003(3):68.
[1] 李微, 韩森, 黄啟波, 姚腾飞, 徐鸥明. 细粒式薄表层沥青混合料中粗集料的骨架特性[J]. 材料导报, 2019, 33(4): 617-624.
[2] 张王田, 张云升, 吴志涛, 刘乃东, 袁涤非. 玻璃纤维增强水泥基材料组成优化设计与性能[J]. 材料导报, 2019, 33(14): 2331-2336.
[3] 张航, 郝培文, 凌天清, 王学武, 何亮. 高温重复荷载作用下复合纤维沥青混合料细微观结构分析[J]. 材料导报, 2018, 32(6): 987-994.
[4] 刘子铭,陈华鑫,熊锐,王泳丹,王小雯. 复掺钢丝绒纤维/水镁石纤维沥青胶浆性能研究[J]. 《材料导报》期刊社, 2018, 32(2): 295-300.
[5] 杨小龙, 申爱琴, 郭寅川, 赵学颖, 吕政桦. 沥青混合料动态模量预估模型研究进展[J]. 《材料导报》期刊社, 2018, 32(13): 2230-2240.
[6] 刘梦梅, 韩 森, 潘 俊, 李 微, 任万艳. 水性环氧树脂乳化沥青在高温、低温和浸水条件下的粘结性能[J]. 《材料导报》期刊社, 2018, 32(10): 1716-1720.
[7] 张争奇, 罗要飞, 张苛. 沥青混合料汉堡车辙试验评价研究综述*[J]. 《材料导报》期刊社, 2017, 31(3): 96-105.
[8] 李超, 陈宗武, 谢君, 吴少鹏, 肖月. 钢渣沥青混凝土技术及其应用研究进展*[J]. 《材料导报》期刊社, 2017, 31(3): 86-95.
[9] 姚晓光,张万磊, 张争奇,栗培龙. 老化SBS改性沥青二次改性再生工艺及机理研究[J]. 《材料导报》期刊社, 2017, 31(24): 79-85.
[10] 任万艳, 韩森, 贾锦绣, 张亚财. 粒化聚合物抗车辙剂对沥和沥青混合料的改性机理*[J]. 《材料导报》期刊社, 2017, 31(20): 129-134.
[11] 熊锐, 杨晓凯, 杨发, 刘子铭, 王小雯, 陈华鑫. 活化煤矸石改性沥青胶浆粉胶比确定及粘温特性研究*[J]. 《材料导报》期刊社, 2017, 31(2): 121-125.
[12] 刘祥, 张正伟, 杨小龙, 邹晓龙. 多聚磷酸改性沥青研究现状及展望*[J]. 《材料导报》期刊社, 2017, 31(19): 104-111.
[13] 常明丰, 黄平明, 裴建中, 张久鹏. 基于离散元方法的沥青混合料力链演化及分布量化分析*[J]. 《材料导报》期刊社, 2017, 31(18): 155-159.
[14] 韦万峰, 郭鹏, 唐伯明. 再生沥青混合料新-旧沥青扩散混合效率研究综述*[J]. 《材料导报》期刊社, 2017, 31(11): 109-114.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed