Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (16): 55-59    https://doi.org/10.11896/j.issn.1005-023X.2017.016.012
  材料研究 |
循环扩挤变形AZ80镁合金的组织、织构与力学性能*
薛勇1, 吴耀金2, 杨治辉2, 张治民1
1 中北大学材料科学与工程学院, 太原 030051;
2 中北大学机电工程学院, 太原 030051
Microstructure,Texture and Mechanical Properties of AZ80 Magnesium Alloy Processed by Cyclic Expansion-extrusion
XUE Yong1, WU Yaojin2, YANG Zhihui2, ZHANG Zhimin1
1 College of Materials Science and Engineering, North University of China, Taiyuan 030051;
2 College of Mechanical and Electrical engineering, North University of China, Taiyuan 030051
下载:  全 文 ( PDF ) ( 1756KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用循环扩挤(Cyclic expansion-extrusion, CEE)变形工艺对AZ80镁合金的块状材料进行热挤压加工,观察试样的微观组织与织构,并测试了力学性能。结果表明:AZ80镁合金经过CEE变形后,晶粒的尺寸明显细化,第4道次CEE变形之后,晶粒尺寸从150~230 μm细化至2 μm,整体分布均匀且呈等轴晶;2道次变形后,随着挤压道次的增加,晶粒的细化程度减慢;同时经过CEE变形的AZ80镁合金织构包括了(0001)基面平行于挤压方向与(1120)棱柱面垂直于挤压方向的两种不同纤维织构,随着挤压道次的增加,织构总体强度出现先减后增再减的变化;力学性能相对于均匀化态有着明显的变化,第1道次CEE变形之后,抗拉强度与屈服强度分别达到各自的最大值,为290 MPa和180 MPa,第2道次CEE变形之后,强度出现不随晶粒细化而增强的现象(反Hall-Petch理论),这是因为织构的软化作用强于晶粒的细化作用,而伸长率随着挤压道次的增加而提高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
薛勇
吴耀金
杨治辉
张治民
关键词:  循环扩挤  AZ80镁合金  织构    
Abstract: The CEE deformation process was conducted on AZ80. The microstructure and texture were observed and the mechanical properties were measured.The results showed that the grain size has been significantly refined after CEE deformation. After four-pass, the grain size refined from 150-230 μm to 2 μm, and the grains presented equiaxied and uniform. After two-pass, with the increase of passes, the degree of grain refinement reduced slowly. Simultaneously, after CEE, AZ80 magnesium alloy texture consisted of two different fiber texture: (0001) plane paralleled to the extrusion direction and (1120) prism which is perpendicular to the compression direction. With the increase of extrusion passes, the overall intensity of texture decreased firstly, then increased and finally decreased. Compared with the homogeneous state, the mechanical properties has obvious various. After one-pass CEE deformation, the tensile strength and yield strength reach the maximum value, and the value was 290 MPa and 180 MPa, respectively. After two-pass of CEE deformation, the strength is not enhanced with grain refinement (anti Hall-Petch theory). This is because the softening effect of texture is stronger than that of grain refinement. The elongation increases with the increase of extrusion passes.
Key words:  cyclic expansion-extrusion    AZ80 magnesium alloy    texture
               出版日期:  2017-08-25      发布日期:  2018-05-07
ZTFLH:  TG376.2  
基金资助: 山西省自然科学基金(2013011022-5)
作者简介:  薛勇:男, 1978年生, 博士, 副教授, 主要研究方向为精密塑性成形及改性技术 E-mail:forge54@163.com
引用本文:    
薛勇, 吴耀金, 杨治辉, 张治民. 循环扩挤变形AZ80镁合金的组织、织构与力学性能*[J]. 《材料导报》期刊社, 2017, 31(16): 55-59.
XUE Yong, WU Yaojin, YANG Zhihui, ZHANG Zhimin. Microstructure,Texture and Mechanical Properties of AZ80 Magnesium Alloy Processed by Cyclic Expansion-extrusion. Materials Reports, 2017, 31(16): 55-59.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.016.012  或          http://www.mater-rep.com/CN/Y2017/V31/I16/55
1 Chen Bin,Lin Liangdong,Zeng Xiaoqin,et al.Present state and perspectives of severe plastic deformation[J].Mater Rev,2006,20(9):73(in Chinese).
陈彬,林栋梁,曾小勤,等.深度塑性变形技术的研究现状与前景[J].材料导报,2006,20(9):73.
2 Zhao Hui,Peng Xiaodong,Wang Yanguang,et al. Research status about plasticity improvement of wrought magnesium alloy[J].Rare Metals,2012,36(1):161(in Chinese).
赵辉,彭晓东,王艳光,等.变形镁合金的塑性改善研究现状[J].稀有金属,2012,36(1):161.
3 Lu Liwei, Zhao Jun, Liu Longfei,et al. Present achievements of severe plastic deformation on magnesium alloy[J]. Trans Mater Heat Treatment,2014,35(S1):1(in Chinese).
卢立伟,赵俊,刘龙飞,等.镁合金大塑性变形的研究进展[J].材料热处理学报,2014,35(S1):1.
4 He Yunbing,Pan Qingling,Liu Xiaoyan,et al.Microstructure and mechanical properties of ZK60 magnesium alloy produced by equal channel angular pressing[J]. Mater Eng,2011(6):32(in Chinese).
何运斌,潘清林,刘晓艳,等.ECAP法制备细晶ZK60镁合金的微观组织与力学性能[J].材料工程,2011(6):32.
5 Wang Qudong,Lin Jinbao,Peng Liming. Influence of cyclic extrusion and compression on the mechanical property of Mg alloy ZK60[J]. Chinese J Nonferrous Metals,2008,44(1):55(in Chinese).
王渠东,林金保,彭立明.往复挤压变形对ZK60镁合金力学性能的影响[J].中国有色金属学报,2008,44(1):55.
6 Pardis N, Chen C, Ebrahimi R, et al. Microstructure, texture and mechanical properties of cyclic expansion-extrusion deformed pure copper[J]. Mater Sci Eng A,2015,628:423.
7 Lu Jun,Zhen Li,Dong Jie,et al. Deformation behaviors of AZ31 magnesium alloy by equal channel angular extrusion[J]. Chinese J Nonferrous Metals,2009,19(3):424(in Chinese).
路君,靳丽.董杰,等.等通道角挤压变形AZ31镁合金的变形行为[J].中国有色金属学报,2009,19(3):424.
8 Kim W J,Jeong H G. Mechanical properties and texture evolution in ECAP processed AZ61 Mg alloys[J].Mater Sci Forum,2003,419/422:201.
9 Kim W J,Hong S I,Kim Y S. Texture evolution and its effects on the mechanical properties of AZ61Mg alloy by equal channel angular extrusion[J].Acta Mater,2003,51:3293.
10 樊刚.热挤压模具设计与制造基础[M].重庆:重庆大学,2001.
11 Babaei A, Mashhadi M M, Jafarzadeh H. Tube cyclic expansion- extrusion as a novel severe plastic deformation method for cylindrical tubes[J].Mater Sci Eng A,2014,49:3158.
12 Pardis N, Chen C, Shahbaz M, et al. Development of new routes of severe plastic deformation through cyclic expansion-extrusion process[J].Mater Sci Eng A,2014,613:357.
13 Rahimi F, Eivani A R, Kiani M. Effect of die design parameters on the deformation behavior in pure shear extrusion[J]. Mater Sci Eng A,2015,83:144.
14 Zhan Meiyan, Li Chunming, Shang Junlin.Investigation of the plastic deformation mechanism and twinning of magnesium alloys[J]. Mater Rev:Res,2011,25(2):1(in Chinese).
詹美燕,李春明,尚俊玲,等.镁合金的塑性变形机制与孪生变形研究[J].材料导报:研究篇,2011,25(2):1.
15 Ma Q, Li B, Whittington W R, et al. Texture evolution during dynamic recrystallization in a magnesium alloy at 450 ℃[J].Acta Mater,2014,67:102.
16 Zaharia L, Comaneci R, Chelariu R, et al.A new severe plastic deformation methed by repetitive extrusion and upsetting [J]. Mater Sci Eng A,2014,595:135.
17 Liu Chuming,Liu Zijuan,Zhu Xiurong,et al.Research and development progress of dynamic recrystallization in pure magnesium and its alloys[J]. Chinese J Nonferrous Metals,2006,16(1):1(in Chinese).
刘楚明,刘子娟,朱秀荣,等.镁及镁合金动态再结晶研究进展[J].中国有色金属学报,2006,16(1):1.
18 Lin Jinbao,Ren Weijie,Wang Xingyi. Research progress of crystal plasticity mechanics model in texture evolution of magnesium alloy[J].Mater Rev:Rev,2016,30(1):102(in Chinese).
林金保,任伟杰,王心怡.镁合金织构演化晶粒塑性力学模型的研究进展[J].材料导报:综述篇,2016,30(1):102.
19 Cui Chongliang,Hong Xiaolu,Sun Yanfu,et al.Research progress in deformation texture of wrought magnesium alloy[J].Ordnance Mater Sci Eng,2015,38(4):127(in Chinese).
崔崇亮,洪晓露,孙廷富,等.镁合金变形织构的研究进展[J].兵器材料科学与工程,2015,38(4):127.
20 Yan Gai,Sun Yangshan,Bai Jing,et al.Effects of rotary-die ECAP routes on microstructure and mechanical property of AZ31 magne-sium alloy[J].Acta Metall Sinica,2010,46(1):27(in Chinese).
严凯,孙扬善,白晶,等.转模等通道转角挤压路径对AZ31镁合金组织与力学性能的影响[J].金属学报,2010,46(1):27.
21 Fatemi-Varzaneh S M, Zarei-Hanzaki A Z, Naderi M, et al. Defor- mation homogeneity in accumulative back extrusion processing of AZ31magnesium alloy[J]. J Alloys Compd,2010,507:207.
22 Wang L P,Chen T,Jiang W Y,et al.Microstruture and mechanical properties of AM60B magnesium alloy alloy prepared by cyclic extrusion compression[J].Mater Sci Eng A,2013,23:3200.
23 Shi B Q, Chen R S, Ke W, et al.Effects of forgeing prodessing on the texture and tensile properties of ECAEed AZ80 magnesium alloy[J].Mater Sci Eng A,2012,546:323.
24 Chen Yongjun,Wang Qudong,Peng Jianguo,et al. Research and development prospects of uilrafine-grained materials fabricated by severe plastic deformation[J].Mater Rev,2005,19(4):70(in Chinese).
陈勇军,王渠东,彭建国,等. 大塑性变形制备细晶材料的研究、开发及展望[J].材料导报,2005,19(4):70.
25 Peng Yonghui. Microstrcture,texture evolution and super- plasticity of Mg-1.5Mn-0.3Ce magnesium alloy processed by severe plastic deformation [D]. Guangzhou:South China University of Technology,2010(in Chinese).
彭勇辉.剧塑性变形Mg-1.5Mn-0.3Ce镁合金的组织与织构演变及超塑性[D].广州:华南理工大学,2010.
26 Cao Fenghong,Chen Yungui,Long Siyuan.Effect of textrue and grain size on mechanical properties of AZ61 magnesium alloy gdu-ring close-die hot-pressing of extruded performs[J].Special Cast Nonferrous Alloys,2016,36(3):242(in Chinese).
曹凤红,陈云贵,龙思远.织构和晶粒对挤锻复合成形AZ61镁合金力学性能的影响[J].特种铸造及有色合金,2016 36(3):242.
[1] 陈琛辉, 蒋璐瑶, 刘成龙, 黄伟九, 郭勇义, 胥桥梁. 搅拌摩擦加工细晶TA2工业纯钛晶粒长大规律[J]. 材料导报, 2019, 33(8): 1367-1370.
[2] 何承绪, 涂蕴超, 孟利, 杨富尧, 刘洋, 马光, 韩钰, 陈新. 超薄取向硅钢组织及织构与磁性能的关系[J]. 材料导报, 2019, 33(6): 1027-1031.
[3] 郑国明, 李磊, 毛小南, 蔡建华, 吴聪, 雷磊. 钛合金BCC↔HCP相变的变体选择及其对晶体取向的影响[J]. 材料导报, 2019, 33(17): 2910-2917.
[4] 俞良良, 张郑, 王快社, 王文, 贾少伟. 搅拌摩擦加工对AZ31镁合金微观组织及力学性能的影响[J]. 《材料导报》期刊社, 2018, 32(8): 1289-1293.
[5] 何承绪, 杨富尧, 孟利, 刘洋, 高洁, 马光, 韩钰, 陈新. 薄规格取向硅钢中晶粒取向和尺寸对Goss晶粒异常长大的影响[J]. 《材料导报》期刊社, 2018, 32(4): 606-610.
[6] 李坤, 贾涓, 熊玮, 谢欢, 宋新莉. 高强IF钢热镀锌层织构分析[J]. 材料导报, 2018, 32(24): 4334-4338.
[7] 彭晓文, 陈冷. 缓冲层Ta对退火Co/Cu/Co薄膜微观结构和界面互扩散的影响[J]. 材料导报, 2018, 32(22): 3931-3935.
[8] 祝佳林, 刘施峰, 柳亚辉, 姬静利, 李丽娟. 冷轧高纯钽板退火过程中微观组织及织构演变的梯度效应[J]. 材料导报, 2018, 32(20): 3595-3600.
[9] 马光,陈新,卢理成,信冬群,孟利,王浩,程灵,杨富尧. 薄规格取向硅钢二次再结晶过程中Goss织构演变的Monte Carlo模拟[J]. 《材料导报》期刊社, 2018, 32(2): 313-315.
[10] 邱兆岭, 陈文刚, 环鹏程, 李创业. 表面织构参数对渗氮304钢在纳米微粒添加剂润滑油作用下摩擦特性的影响[J]. 材料导报, 2018, 32(18): 3217-3222.
[11] 王运雷,张 杰,龚丽娟. 中间退火及成品退火速率对高压阳极铝箔微观组织的影响[J]. 《材料导报》期刊社, 2018, 32(10): 1612-1617.
[12] 刘成红, 王均安, 熊邦汇, 张植权, 陈纪昌, 贺英. 立方织构Ni-Cr-Mo-W合金薄带及其性能*[J]. 《材料导报》期刊社, 2017, 31(20): 53-57.
[13] 李德超, 董俊慧, 陈海鹏, 王海燕. 退火张力对无取向硅钢再结晶织构和磁性能的影响*[J]. 《材料导报》期刊社, 2017, 31(2): 92-95.
[14] 苏剑, 张辉, 滕杰, 蒋福林, 孙轶山. 冷轧前热处理对6016-T4P铝合金组织和力学性能的影响*[J]. 《材料导报》期刊社, 2017, 31(2): 87-91.
[15] 郑晓辉, 宋皓, 张庆, 叶雄, 孟令东, 谭俊. 激光表面织构化对材料摩擦学性能影响的研究进展*[J]. 《材料导报》期刊社, 2017, 31(17): 68-74.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed