Please wait a minute...
材料导报  2022, Vol. 36 Issue (10): 20110258-6    https://doi.org/10.11896/cldb.20110258
  无机非金属及其复合材料 |
混凝土再生微粉颗粒特征及其砂浆性能研究
付勇1, 薛翠真1,*, 何江红2, 刘玉果2, 朱翔琛1
1 兰州理工大学土木工程学院,兰州 730050
2 中国建筑第四工程局有限公司,广州 510665
Study on the Particle Characteristics of Recycled Concrete Powder and the Performance of Mortar
FU Yong1, XUE Cuizhen1,*, HE Jianghong2, LIU Yuguo2, ZHU Xiangchen1
1 School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, China
2 China Construction Fourth Engineering Bureau Co., Ltd., Guangzhou 510665, China
下载:  全 文 ( PDF ) ( 6216KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为提高建筑垃圾混凝土粉(以下简称混凝土粉)的高效再生利用率,在测试分析水泥、混凝土粉、硅灰胶凝体系颗粒特征的基础上,利用Dinger-Funk模型,研究水泥-混凝土粉二元体系、水泥-混凝土粉-硅灰三元体系对胶凝材料密实填充效应的影响规律,并基于灰关联熵理论和SEM微观试验方法,探讨分析混凝土粉的颗粒特征对砂浆强度和内部结构密实度的影响显著性及影响机理。结果表明:较细混凝土粉单掺降低了砂浆早期强度,当其掺量控制在10%~20%时,28 d砂浆的微观形貌表现为密实状,后期强度有所提高。混凝土粉-硅灰复掺时,硅灰进一步填充水泥-混凝土粉的颗粒孔隙,使得胶凝材料体系堆积密实程度进一步改善,表现为28 d强度显著提高;10~20 μm粒径范围内的混凝土粉颗粒含量与砂浆的力学性能及胶凝材料体系的填充效应呈正相关,粒径大于40 μm的混凝土粉颗粒含量与其呈负相关。综上分析,为保证砂浆强度同时最大程度利用混凝土粉,应尽量增加粒径小于40 μm的颗粒含量,尤其是粒径小于10 μm的颗粒含量;减少粒径大于60 μm的颗粒含量,以优化混凝土的颗粒级配,同时其替代量应控制在20%范围内。本工作为建筑垃圾混凝土粉的细度控制及高效再生利用奠定了一定的理论与技术基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
付勇
薛翠真
何江红
刘玉果
朱翔琛
关键词:  混凝土粉  颗粒参数  颗粒分布  填充效应  灰关联熵理论    
Abstract: In order to improve the efficient recycling efficiency of concrete powder of construction waste (hereinafter referred to as concrete powder), based on the test and analysis of the particle characteristics of cement, concrete powder and silica fume cementitious system, the influence of cement concrete powder, cement concrete powder silica fume binary and ternary system on the dense filling effect of cementitious materials was studied by using the Dinger-Funk model. Based on the theory of grey correlation entropy and SEM micro test method, the influence of the particle characteristics of concrete powder on mortar strength and internal structure compactness of mortar was also discussed. The research results showed that the single mixing of finer concrete powder reduced the early strength of the mortar, when the mixing amount was controlled at 10%—20%, the 28 d microscopic morphology appeared compact, and the later strength was improved. When the concrete powder-silica fume was mixed, the silica fume was further filled with the particle pores of cement concrete powder, which further improves the compaction of the cementitious material system, and the 28 d strength was significantly improved. The content of concrete powder particles with the diameter range of 10—20 μm was positively related to the mechanical properties of mortar and the filling effect of cementitious material system, and the content of concrete powder particles with the diameter more than 40 μm was negatively correlated with it. In summary, in order to ensure the strength of the mortar and maximize the use of concrete powder, the content of particles with the diameter less than 40 μm should be increased as much as possible, especially the content of particles with the diameter less than 10 μm. The content of particles with the diameter more than 60 μm should be reduced to optimize the particle gradation of concrete. At the same time, the replacement amount should be controlled within 20%. This work will provide theoretical and technical support for the fineness control and high efficiency recycling of construction waste concrete powder.
Key words:  concrete powder    particle parameter    particle distribution    filling effect    the theory of grey relation entropy
发布日期:  2022-05-24
ZTFLH:  TP319.56  
基金资助: 西北寒旱地区建筑垃圾再生微粉混凝土腐蚀性能及机理研究(20JR5RA440);西北特殊地区超长池体混凝土抗渗性能及抗裂性能研究(1602202000219004)
通讯作者:  xuecuizhen2008@163.com   
作者简介:  付勇,兰州理工大学土木工程学院硕士研究生。主要从事混凝土耐久性及寿命预测研究。在国内外重要期刊发表文章4篇。
薛翠真,兰州理工大学土木工程学院讲师。2017年12月毕业于长安大学,获得工学博士学位。主要从事水泥基材料结构、耐久性能与建筑垃圾的再生利用研究。在国内外重要期刊发表文章10余篇。
引用本文:    
付勇, 薛翠真, 何江红, 刘玉果, 朱翔琛. 混凝土再生微粉颗粒特征及其砂浆性能研究[J]. 材料导报, 2022, 36(10): 20110258-6.
FU Yong, XUE Cuizhen, HE Jianghong, LIU Yuguo, ZHU Xiangchen. Study on the Particle Characteristics of Recycled Concrete Powder and the Performance of Mortar. Materials Reports, 2022, 36(10): 20110258-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20110258  或          http://www.mater-rep.com/CN/Y2022/V36/I10/20110258
1 Issam A , Dalal B , Kenin B, et al. Construction & Building Materials, 2019, 226, 555.
2 Peng G F, Zhang J. Key Engineering Materials Vols, 2015, 314,320.
3 Liu C, Hu T F, Liu H W, et al. Journal of Building Materials, 2021,24(4),726 (in Chinese).
刘超, 胡天峰, 刘化威, 等.建筑材料学报, 2021, 24(4), 726.
4 Chen J J, Qin Y J, Xiao J Z, et al. Journal of Building Materials, 2021, 24(6),8 (in Chinese).
陈洁静, 秦拥军, 肖建庄, 等.建筑材料学报, 2021, 24(6), 8.
5 Braga M, Be B J, Veiga R. Materials and Structures, 2014, 47, 171.
6 Qin L, Gao X J. Waste Management, 2019, 89, 254.
7 Wang S. Effect of mineral admixture on performance of interface transition zone and pore structure of concrete. Master's Thesis, Harbin Institute of Technology, China, 2018 (in Chinese).
王双. 掺合料对混凝土的界面过渡区性能及孔结构的影响研究. 硕士学位论文, 哈尔滨工业大学, 2018.
8 Li K, Zang Q, Luo M, et al. Construction & Building Materials, 2014, 51(1), 329.
9 Liu S H. Journal of Building Materials, 2010(2), 218 (in Chinese).
刘数华.建筑材料学报, 2010(2), 218.
10 Ding X Q, Xing W, Li H. Concrete, 2018(11), 94 (in Chinese).
丁向群, 邢伟, 李贺.混凝土, 2018(11), 94.
11 Liu S. China Building Materials Science and Technology, 2018, 27(2), 52 (in Chinese).
刘升.中国建材科技, 2018, 27(2), 52.
12 Kang M. Fly Ash, 2015,27(3),14 (in Chinese).
康明. 粉煤灰, 2015,27(3), 14.
13 Zhang Y J, Zhang X. Cement Technology, 2006(5), 36 (in Chinese).
张永娟, 张雄.水泥技术, 2006(5),36.
14 He X Y, Chen Y M, Ma B G, et al. Materials Reports, 2008(5),89.
贺行洋, 陈益民, 马保国, 等.材料导报, 2008(5), 89.
15 Xue C Z, Shen A Q, Guo Y C. Materials Reports B:Research Papers, 2019, 33(4),1348 (in Chinese).
薛翠真, 申爱琴, 郭寅川. 材料导报:研究篇, 2019, 33(4), 1348.
16 Xue C Z, Shen A Q, Qiao H X.Journal of South China University of Technology (Natural Science Edition), 2020, 48(3), 136 (in Chinese).
薛翠真, 申爱琴, 乔宏霞. 华南理工大学学报(自然科学版), 2020, 48(3), 136.
17 Vitoria G M, Jose A A, Jojo B B. Advanced Materials Research. 2020, 4629,97.
18 Cui G, Liu J Z, Yao T, et al. Journal of Southeast University (Natural Science Edition), 2010, 40(S2), 15 (in Chinese).
崔巩, 刘建忠, 姚婷, 等. 东南大学学报(自然科学版), 2010, 40(S2), 15.
19 Andreasen A H M. Kolloid-Zeitschrift, 1930, 50(3),217.
20 Youa M L, Shub C M, Chencw T, et al. Journal of Cleaner Production, 2017, 142(4),3883.
21 Cai K F, Wang D F. Structural and Multidisciplinary Optimization, 2017, 56(6),1539.
No related articles found!
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed