Please wait a minute...
材料导报  2021, Vol. 35 Issue (20): 20099-20105    https://doi.org/10.11896/cldb.20100284
  金属与金属基复合材料 |
中性盐雾环境下钢板表面锈蚀深度随机场模型
孔德亮1,2, 聂彪1,2, 徐善华1,2
1 西安建筑科技大学土木工程学院,西安 710055
2 工程结构安全与耐久重点实验室(西安建筑科技大学),西安 710055
Stochastic Model of Corrosion Depth on Surface of Steel Plate in Neutral Salt Fog Environment
KONG Deliang1,2, NIE Biao1,2, XU Shanhua1,2
1 School of Civil Engineering, Xi’an University of Architecture & Technology, Xi’an 710055, China
2 Key Lab of Engineering Structural Safety and Durability(XAUAT), Xi’an 710055, China
下载:  全 文 ( PDF ) ( 7106KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了得到中性盐雾环境下钢板表面锈蚀深度随机场模型,采用中性盐雾循环试验对10组试件进行加速锈蚀,获得了锈蚀钢板表面轮廓图及锈蚀深度三维坐标数据。研究了锈蚀深度概率分布特性,分析了锈蚀深度均值、标准差与锈蚀率的关系。对锈蚀深度进行了平稳性与各态历经性检验,提出了锈蚀深度随机场自相关函数模型。结果表明:钢板表面锈蚀深度符合正态分布;随锈蚀率的增大,锈蚀深度均值、标准差也增大;钢板表面锈蚀深度具有平稳性与各态历经性;余弦三角函数随机场模型能较精确地表征锈蚀深度分布特征。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孔德亮
聂彪
徐善华
关键词:  中性盐雾环境  锈蚀深度  随机场  形貌图  正态分布    
Abstract: The stochastic model of corrosion depth of steel plate in neutral salt spray environment was studied. 10 groups of specimens were subjected to accelerated corrosion by the neutral salt spray test. The surface topography of corroded steel plate and the 3D data of corrosion depth were measured. The probability distribution characteristics of corrosion depth were investigated and the relationship between the mean and stan-dard deviation of corrosion depth and corrosion rate were analyzed. The corrosion depth was tested for ergodicity and stationary and the autocorrelation function model of corrosion depth random field was proposed. The results of the study show that the corrosion depth of steel plate in neutral salt spray environment fitted the normal distribution. With the increase of corrosion rate, the mean and standard deviation of the corrosion depth increase. The corrosion depth on surface of steel plate has the ergodicity and stationary. The stochastic model of cosine trigonometric function can accurately characterize the distribution of corrosion depth.
Key words:  neutral salt fog environment    corrosion depth    stochastic field    surface topography    normal distribution
               出版日期:  2021-10-25      发布日期:  2021-11-12
ZTFLH:  TU511.3+5  
基金资助: 国家自然科学基金(51678477);国家自然科学基金青年基金(51908455)
通讯作者:  xushanhua@163.com   
作者简介:  孔德亮,2014年6月毕业于西安建筑科技大学结构工程专业,获硕士研究生学位。现攻读西安建筑科技大学结构工程专业博士学位,主要从事钢结构耐久性研究。
徐善华,博士(后),教授,博士研究生导师,国家一级注册结构工程师,西安建筑科技大学结构工程学科学术带头人。主要从事混凝土结构与钢结构耐久性研究,主持国家自然科学基金面上项目4项,“十三五”国家重点研发计划项目1项,省部级科研项目10余项,中国博士后基金1项。参与编制国家标准规范3部,发表学术论文100余篇,参编著作2部。获国家科技进步二等奖1项,陕西省科学技术一等奖1项、二等奖1项、三等奖1项、陕西省教育厅科学技术一等奖2项、二等奖1项。
引用本文:    
孔德亮, 聂彪, 徐善华. 中性盐雾环境下钢板表面锈蚀深度随机场模型[J]. 材料导报, 2021, 35(20): 20099-20105.
KONG Deliang, NIE Biao, XU Shanhua. Stochastic Model of Corrosion Depth on Surface of Steel Plate in Neutral Salt Fog Environment. Materials Reports, 2021, 35(20): 20099-20105.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20100284  或          http://www.mater-rep.com/CN/Y2021/V35/I20/20099
1 Liu X L. Metal World,2004(4),1(in Chinese).
刘锡良.金属世界,2004(4),1.
2 Wang P W, Zhou P, Chen A J, et al. Steel Construction,2001,16(3),51(in Chinese).
王培文,周平,陈爱洁,等.钢结构,2001,16(3),51.
3 Metal corrosion group of the Institute of Oceanology. Marine Sciences,1979(s1),60(in Chinese).
中国科学院海洋研究所金属腐蚀组.海洋科学,1979(s1),60.
4 Fan Y F, Zhang Y Z, Hu Z Q, et al. Journal of Architectural Materials,2006,9(1),99(in Chinese).
范颖芳,张英姿,胡志强,等.建筑材料学报,2006,9(1),99.
5 Yan L, Liao K J, Meng D Y, et al. Petroleum Engineering Construction,2007,33(3),1(in Chinese).
颜力,廖柯嘉,蒙东英,等.石油工程建设,2007,33(3),1.
6 Zhang J Y, Hong M G. Journal of Chinese Society for Corrosion and Protection,1994,14(2),161(in Chinese).
张九渊,洪明庚.中国腐蚀与防护学报,1994,14(2),161.
7 Wang Y W, Huang X P, Cui W C. Journal of Ship Mechanics,2007,11(4),577(in Chinese).
王燕舞,黄小平,崔维成.船舶力学,2007,11(4),577.
8 Qin G, Xu S, Yao D, et al. Journal of Constructional Steel Research,2016,125,205.
9 Zhang H, Xu S, Nie B, et al. Construction & Building Materials,2019,225,1202.
10 Wu H, Lei H, Chen Y F, et al. Construction & Building Materials,2019,211,228.
11 Wang Y, Xu S, Wang H, et al. Construction & Building Materials,2017,152,777.
12 Du Q D L, Undcrhill P R, Britt H J. International Journal of Fatigue,2003,25(5),371.
13 Hoeppner D W, Chandrasekaran V, Taylor A.In: Proceedings of the 20th Symposium of the International Committee on Aeronautical Fatigue. Dayton, USA,1999,pp. 253.
14 Sankaran K K, Perez R, Jata K V. Materials Science and Engineering,2001,297(1-2),223.
15 Crawford B R, Loadcr C, Ward A R, et al. Fatigue & Fracture of Engineering Material & Structures,2005,28(9),795.
16 Murakami Y. Engineering Fracture Mechanics,1985,22(1),101.
17 Jiang Q. Sichuan Building Materials,2011,37(3),28(in Chinese).
蒋庆.四川建材,2011,37(3),28.
18 Melchers R E, Ahammed M, Jeffrey R, et al. Marine Structures,2010,23(3),274.
19 Rahbar-Ranji A. Ocean Engineering,2012,54(s1-4),261.
20 GB10587-2006, Specifications for Salt Mist Testing Chambers, Standardization Administration of the People’s Republic of China, China,2006(in Chinese).
GB10587-2006,盐雾试验箱技术条件,中国国家标准出版社,2006.
21 GB/T2423.17-93, Salt spray test, Standardization Administration of the People’s Republic of China, China,1993(in Chinese).
GB/T2423.17-93,盐雾试验方法,中国国家标准出版社,1993.
22 Yan S W, Jia X L, Guo H Z, et al. Journal of Geotechnical Engineering,1995,17(3),1(in Chinese).
闫澍旺,贾晓黎,郭怀志,等.岩土工程学报,1995,17(3),1.
23 Nouy A. Computer Methods in Applied Mechanics & Engineering,2007,196(45),4521.
24 Bielewicz E, Górski J. International Journal of Non-Linear Mechanics,2002,37(4),777.
No related articles found!
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed