Please wait a minute...
材料导报  2022, Vol. 36 Issue (11): 20090287-9    https://doi.org/10.11896/cldb.20090287
  金属与金属基复合材料 |
双金属复合构件离心铸造技术
王于金1, 秦芳诚1, 齐会萍2, 李永堂2, 亓海全1, 孟征兵1
1 桂林理工大学有色金属及材料加工新技术教育部重点实验室,广西 桂林 541004
2 太原科技大学金属材料成形理论与技术山西省重点实验室,太原 030024
Centrifugal Casting Technology for Bimetallic Composite Component
WANG Yujin1, QIN Fangcheng1, QI Huiping2, LI Yongtang2, QI Haiquan1, MENG Zhengbing1
1 Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education, Guilin University of Technology, Guilin 541004, Guangxi, China
2 Shanxi Key Laboratory of Metallic Materials Forming Theory and Technology, Taiyuan University of Science and Technology, Taiyuan 030024, China
下载:  全 文 ( PDF ) ( 3739KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 轧辊、无缝管和环类零件等是核电火电、石油化工和大型轧机等高端装备的关键基础构件,具有承载、连接和传动等作用,品种多、用量大、用途广。单一金属材料轧辊、无缝管和环件在性能上越来越难以满足重大装备在极端严酷环境下的服役性能要求,如在高磨损、高腐蚀环境下不仅需要考虑构件材料本身的力学性能,还必须采用抗磨损、抗腐蚀合金提高构件的力学性能和延长其使用寿命。
因此,将具有不同性质的两种材料复合在一起组成双金属复合构件,可以实现两种单一金属组元性能的优势互补。单侧性能要求较高时,双金属构件可以取代稀有、贵重金属,在深空探测、风电、石化和远洋船舶等领域应用广泛。由于双金属材料成分、结构和性能的差异,其复合界面形态与结合特点是该类构件制造的关键。经过多年的研究与发展,已实现了复合辊、复合管等双金属复合构件离心铸造技术生产。双金属复合辊为外层卧式离心铸造、内层重力填充铸造,双金属复合管内、外层均为典型的卧式离心铸造,双金属结合界面形态受外层浇注温度、内外层浇注间隔时间和铸型转速的影响,结合层厚度的影响因素主要为浇注温度和凝固方法,复合构件性能主要取决于结合界面的性能;在复合辊和复合管离心铸造过程中,加以电磁控制和多元合金变质处理,以及离心铸造复合后进行阶梯热处理,均能够改善结合界面形态与成分分布均匀性,从而提高其结合性能,离心铸造复合成形机理主要为冶金结合。
本文综述双金属复合构件离心铸造技术的研究现状,以典型双金属复合辊和复合管为研究对象,分析其离心铸造工艺特点与成形规律,探讨工艺参数对结合界面和结合性能的影响规律,揭示离心铸造过程中的组织演变机理,指出双金属构件离心铸造中存在的问题。结合盘状类环形零件的特点,展望双金属离心铸造复合构件的发展趋势与重点研究内容。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王于金
秦芳诚
齐会萍
李永堂
亓海全
孟征兵
关键词:  双金属构件  离心铸造  复合管  结合界面    
Abstract: Roller, seamless pipe and ring parts with the functions of bearing, connecting and driving are the key basic components of high-end equipment including nuclear power plant, petrochemical and large rolling mill. They are characterized by many varieties, large amount and wide application. The properties of single-metallic roller, pipe and ring parts are difficult to meet the performance requirements for major equipment service in extreme harsh conditions. For example, under high wear and high corrosion environment, not only the mechanical properties of the component should be considered, but also the service performance of the component should be improved and its life should be prolonged by adopting anti-wear and anti-corrosion alloy.
Therefore, the advantage complementary of single-metal material can be realized by compounding two materials with different properties to the bimetallic composited components. When the performance of one-side is high, the rare and precious materials can be replaced by the bimetallic components, which are widely used in the fields of deep space exploration, wind power, petrochemicals and ocean-going ships, etc. Due to the difference of structure and performance in the bimetallic materials, the key of the composite in bimetallic components is characterized by the interface morphology and bonding characteristics. After decades of research and development, the centrifugal casting of bimetallic composited roller and pipes have been achieved. For the bimetallic composited roller, the outer-layer and inner-layer are produced by the horizontal centrifugal casting and gravity filling casting, respectively. And both the outer- and inner-layers in the bimetallic composited pipe are produced by the horizontal centrifugal casting. The morphology of the bimetallic bonding interface is affected by the pouring temperature of the outer-layer, intervals between inner- and outer-layers and rotate speed of casting mould. The effect factors of the bonding thickness are mainly pouring temperature and solidification method. The mechanical properties of composited components heavily depends on the bonding interface. During the centrifugal cas-ting of bimetallic composited roller and pipe, the electromagnetic control, multi-alloy modification and step heat treatment after centrifugal casting can improve the morphology and the uniformity of composition distribution in bonding interface, which lead to the improvement in bonding properties. The composited mechanism of centrifugal casting is mainly characterized by metallurgical bonding.
In this paper, the research status on the centrifugal casting of bimetallic components is summarized. Taking the bimetallic roller and bimetallic pipe for example, the forming feature and rule of centrifugal casting are analyzed. The effect of processing parameters on bonding interface and properties are discussed. The mechanisms of microstructure evolution in centrifugal casting are revealed. The existing problems in the centrifugal casting of bimetallic components are pointed out. Combining the features of disc-shaped ring parts, the trends and focused research contents on the centrifugal casting of bimetallic composited components are expected.
Key words:  bimetallic component    centrifugal casting    composited pipe    bonding interface
发布日期:  2022-06-09
ZTFLH:  TG331  
  TG142  
基金资助: 国家自然科学基金(51875383);广西自然科学基金项目(2019GXNSFAA245051;2018GXNSFBA281056);广西科技重大专项(GKAA17202007);有色金属及材料加工新技术教育部重点实验室/广西光电材料与器件重点实验室开放基金(20AA-8)
通讯作者:  qinfangcheng@glut.edu.cn   
作者简介:  王于金,2019年6月毕业于太原科技大学,获得工学学士学位。现为桂林理工大学材料科学与工程学院硕士研究生,主要的研究方向为金属材料精确塑性成形技术。
秦芳诚,桂林理工大学讲师,硕士研究生导师。主要研究方向为金属材料连续与精密成形技术、精确塑性成形过程组织演变与性能控制。近年来主持和参与国家自然科学基金、广西自然科学基金和企业委托项目5项。发表论文30余篇,其中SCI/EI收录20篇,获发明专利15项。
引用本文:    
王于金, 秦芳诚, 齐会萍, 李永堂, 亓海全, 孟征兵. 双金属复合构件离心铸造技术[J]. 材料导报, 2022, 36(11): 20090287-9.
WANG Yujin, QIN Fangcheng, QI Huiping, LI Yongtang, QI Haiquan, MENG Zhengbing. Centrifugal Casting Technology for Bimetallic Composite Component. Materials Reports, 2022, 36(11): 20090287-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20090287  或          http://www.mater-rep.com/CN/Y2022/V36/I11/20090287
1 Zhang B. Numerical simulation and technology optimization of centrifugal casting bimetal composite pipe. Master's Thesis, Wuhan University of Technology, China, 2018(in Chinese).
张勃. 离心铸造双金属复合管数值模拟与工艺优化. 硕士学位论文, 武汉理工大学, 2018.
2 Zherebtsov S N, Lopaev B E. Metal Science and Heat Treatment, 2005, 47, 9.
3 Zherebtsov S N, Fat'yanov S V. Chemical and Petroleum Engineering, 2005, 41, 5.
4 Zherebtsov S N. Chemical and Petroleum Engineering, 2008, 44, 3.
5 Teng H T, Zhang X L, Qi K, et al. Rare Metal Materials and Enginee-ring, 2010, 39(8), 1465(in Chinese).
滕海涛, 张小立, 齐凯, 等. 稀有金属材料与工程,2010,39(8),1465.
6 Wang X J. Microstructure and mechanical properties of centrifugal cast ZW61 and AZ91 magnesium alloy. Master's Thesis, Shenyang University of Technology, China, 2012(in Chinese).
王晓佳. 离心铸造ZW61和AZ91镁合金的组织及力学性能. 硕士学位论文, 沈阳理工大学, 2012.
7 Guan Y K. Study on horizontal centrifugal casting process of magnesium alloy and its properties of the sheets prepared by the rolling process. Master's Thesis, Shenyang University of Technology, China, 2019(in Chinese).
关涌康. 卧式离心铸造镁合金工艺及其轧制成形板材性能研究. 硕士学位论文, 沈阳工业大学, 2019.
8 Kitao. Manufacturing technology of steel-clad by casting-rolling method. Iron and Steel, Japanese, 1989.
9 Amits. Bearing alloys of over loaded and diselard gas turbine progress, America Edition, America, 1975.
10 Yamamichi E. Key technologies about steel-clad. Journal of Japanese Composite Materials, Japanese, 1977.
11 Ma Z X, Hu J, Li D F, et al. Chinese Journal of Rare Metals, 2003, 27(6), 799(in Chinese).
马志新, 胡捷, 李德富, 等. 稀有金属, 2003, 27(6), 799.
12 Zhou J J. Studies on the roll-forming and properties of stainless steel/aluminum/stainless steel laminated sheet. Master's Thesis, Xi'an University of Architecture and Technology, China, 2006(in Chinese).
周俊杰. 不锈钢/铝(合金)/不锈钢复合材料轧制复合与性能研究. 硕士学位论文, 西安建筑科技大学, 2006.
13 Lu S L. Numerical simulation studies on casting process and effects of process parameters for horizontal centrifugal compound casting rolls. Master's Thesis, Yanshan University, China, 2016(in Chinese).
鲁素玲. 卧式离心复合铸造轧辊铸造过程及工艺影响的数值模拟. 硕士学位论文, 燕山大学, 2016.
14 Xia P J, Wang Z, Guo C S, et al. Special Casting & Nonferrous Alloys, 2007, 27 (8), 580(in Chinese).
夏鹏举, 王忠, 郭从盛, 等. 特种铸造及有色合金,2007,27(8),580.
15 Fu R D. Heavy Casting and Forging, 2001(3), 1(in Chinese).
付瑞东. 大型铸锻件, 2001(3), 1.
16 Wang J B, Li L, Sun G G, et al. Metallurgical Equipment, 2003(6), 59(in Chinese).
王建宾, 李磊, 孙冠功, 等. 冶金设备, 2003(6), 59.
17 Xia P J. Hot Working Technology, 2002(5), 35(in Chinese).
夏鹏举. 热加工工艺, 2002(5), 35.
18 Wang Z C, Fu H M, Li J P, et al. Modern Cast Iron, 2009, 29(3), 44(in Chinese).
王志成, 付会敏, 李剑平, 等. 现代铸铁, 2009, 29(3), 44.
19 Wang X Y. Mechanical Research & Application, 2009, 22(3), 86(in Chinese).
王兴衍. 机械研究与应用, 2009, 22(3), 86.
20 Shi J W, Yang D X, Ni F, et al. Hot Working Technology, 2005(6), 6(in Chinese).
师江伟, 杨涤心, 倪锋, 等. 热加工工艺, 2005(6), 6.
21 Zhu Y C, Wei Z J, Rong S F, et al. Materials Research Innovations, 2015, 19, 561.
22 Lu S L, Xiao F R, Guo Z H, et al. Applied Thermal Engineering, 2016, 93, 518.
23 Liu H. Foundry, 1998(12), 22(in Chinese).
刘宏. 铸造, 1998(12), 22.
24 Liu S C, Hui Z Y, Liu N, et al. Modern Cast Iron, 2007(3), 71(in Chinese).
刘绍昌, 回桢玉, 刘娜, 等. 现代铸铁, 2007(3), 71.
25 Howard S J, Tsui Y C, Clyne T W. Acta Metallurgica at Materialia, 1994, 42(8), 2823.
26 Fu H G, Xing J D. Foundry Technology, 2004(11), 859(in Chinese).
符寒光, 邢建东. 铸造技术, 2004(11), 859.
27 Fu H G, Liu J H. Special-cast and Non-ferrous Alloys, 1999(5), 31(in Chinese).
符寒光, 刘金海. 特种铸造及有色合金, 1999(5), 31.
28 Liu N, Ai Z C, Wang S H, et al. Modern Cast Iron, 2008(4), 69(in Chinese).
刘娜, 艾忠诚, 王素红, 等. 现代铸铁, 2008(4), 69.
29 Fan Y X, Li Q L, Zhang X D, et al. Heat Treatment of Metals, 2008(7), 20(in Chinese).
范永祥, 李丘林, 张晓丹, 等. 金属热处理, 2008(7), 20.
30 Li H Y, Liu B C. China Foundry Machinery & Technology, 2016(5), 57(in Chinese).
李红宇, 刘宝存. 中国铸造装备与技术, 2016(5), 57.
31 Li J C, Zhao A M. Foundry Technology,2010,31(4),502(in Chinese).
李具仓, 赵爱民. 铸造技术, 2010, 31(4), 502.
32 Wu W Q, Fu H G. Iron Steel Vanadium Titanium, 1999(4), 41(in Chinese).
吴卫强, 符寒光. 钢铁钒钛, 1999(4), 41.
33 Fu X H, Bai Y L, Zhang H S. CFHI Technology, 2018(5), 40(in Chinese).
付晓虎, 白云龙, 张洪生. 一重技术, 2018(5), 40.
34 Zhang H C. Hot Working Technology,2010,39(14),190(in Chinese).
张海臣. 热加工工艺, 2010, 39(14), 190.
35 Ji X G, Bai S N, Du X J, et al. China Foundry Machinery & Technology, 2019, 54(3), 38(in Chinese).
冀鑫刚, 白思诺, 杜旭景, 等. 中国铸造装备与技术,2019,54(3),38.
36 Xu J, Gao X, Jiang Z, et al. The International Journal of Advanced Ma-nufacturing Technology, 2016, 86(1-4), 817.
37 Yang X M, Sun Y H, Yu X P, et al. Foundry Technology, 1993(6), 9(in Chinese).
杨学民, 孙月海, 于宪溥, 等. 铸造技术, 1993(6), 9.
38 Fang D C, Yao M. Foundry, 1997(6), 39(in Chinese).
方大成, 姚曼. 铸造, 1997(6), 39.
39 Wang D L, Wu J H, Cai B, et al. Special-cast and Non-ferrous Alloys, 2018, 38(3), 288(in Chinese).
王冬林, 吴金辉, 蔡彬, 等. 特种铸造及有色合金,2018,38(3),288.
40 Gao H. Foundry Technology, 2013, 34(3), 330(in Chinese).
高浩. 铸造技术, 2013, 34(3), 330.
41 Fu H G, Mi S L, Xing J D, et al. Foundry,2005,54(4),386(in Chinese).
符寒光, 弭尚林, 邢建东, 等. 铸造, 2005, 54(4), 386.
42 Zhang W, Xu Y H, Liu W T. Hot Working Technology, 2007(21), 41(in Chinese).
张伟, 许云华, 刘伟涛. 热加工工艺, 2007(21), 41.
43 Bao Y. The study on the rolling process of bimetallic seamless steel tube. Master's Thesis, Tianjin University of Technology, China, 2014(in Chinese).
鲍岩. 双金属复合无缝钢管轧制成型过程的研究. 硕士学位论文, 天津理工大学, 2014.
44 Gao J Z. Welded Pipeand Tube, 2017, 40(7), 44(in Chinese).
高建忠. 焊管, 2017, 40(7), 44.
45 Deng C J, Wang X G, Du X M. Foundry Technology, 2016, 37(6), 1197(in Chinese).
邓传杰, 汪选国, 杜学铭. 铸造技术, 2016, 37(6), 1197.
46 Liu J, Han J T, Wu W. Journal of University of Science and Technology Beijing, 2012, 34(S1), 54(in Chinese).
刘靖, 韩静涛, 吴伟. 北京科技大学学报, 2012, 34(S1), 54.
47 Wu W, Li Y X, Han J T, et al. Foundry,2015,64(4),336(in Chinese).
吴伟, 李艳霞, 韩静涛, 等. 铸造, 2015, 64(4), 336.
48 Hu B, Na S S, Tao J C, et al. Heat Treatment, 2008, 23(6), 51(in Chinese).
胡冰, 那顺桑, 陶进长, 等. 热处理, 2008, 23(6), 51.
49 Wu X. Numerical simulation and process research for centrifugal casting composite bimetallic pipe. Master's Thesis, Wuhan University of Technology, China, 2015(in Chinese).
吴轩. 离心铸造双层金属管数值模拟与工艺研究. 硕士学位论文, 武汉理工大学, 2015.
50 Xu C, Hu J H, Wu X, et al. Special-cast and Non-ferrous Alloys, 2016, 36(5), 517(in Chinese).
徐畅, 胡建华, 吴轩, 等. 特种铸造及有色合金,2016,36(5),517.
51 Guo M H, Cai Y L, Sun H B, et al. Steel Pipe, 2008(1), 38(in Chinese).
郭明海, 蔡玉丽, 孙红波, 等. 钢管, 2008(1), 38.
52 Gu J F. The study on microstructure and mechanical property of 304 stainless steel-high chromium cast iron wear-resistant composite pipe. Master's Thesis, Wuhan University of Technology, China, 2018(in Chinese).
顾剑峰. 304不锈钢-高铬铸铁耐磨复合管组织及性能研究. 硕士学位论文, 武汉理工大学, 2018.
53 Yao S J. Special Casting & Nonferrous Alloys, 2007, 27(2), 104(in Chinese).
姚三九. 特种铸造及有色合金, 2007, 27(2), 104.
54 Wang J L, Li J, Ma L. Hot Working Technology, 2016, 45(13), 101(in Chinese).
王建玲, 李敬, 马良. 热加工工艺, 2016, 45(13), 101.
55 Liu J X, Dong R, Zhao A M, et al. Foundry, 2012, 61(8), 886(in Chinese).
刘继雄, 董瑞, 赵爱民, 等. 铸造, 2012, 61(8), 886.
56 Xiao H Z, Fu Y Z, Yang X M, et al. Foundry Technology, 1994(1), 39(in Chinese).
萧骅昭, 付玉珍, 杨学民, 等. 铸造技术, 1994(1), 39.
57 Zhang G S, Gao Y M, Xing J D, et al. Journal of Xi'an Jiaotong University, 2006(7), 815(in Chinese).
张国赏, 高义民, 邢建东, 等. 西安交通大学学报, 2006(7), 815.
58 Chen C, Wang X G. Hot Working Technology, 2019, 48(4), 222(in Chinese).
陈聪, 汪选国. 热加工工艺, 2019, 48(4), 222.
59 韩星会, 华林, 周光华, 等. 中国专利, ZL 201310013103.7, 2015.
60 Qin F C, Li Y T, Qi H P, et al. Chinese Journal of Mechanical Enginee-ring, 2017, 30(1), 7.
61 秦芳诚, 李永堂, 齐会萍, 等. 中国专利, ZL201510610375.4, 2017.
62 秦芳诚, 李永堂, 齐会萍, 等. 中国专利, ZL201710264730.6, 2018.
[1] 秦芳诚, 齐会萍, 李永堂, 亓海全. 离心铸造Q235B钢环件热辗扩过程中的组织演变[J]. 材料导报, 2020, 34(12): 12132-12138.
[2] 樊江磊, 王星星, 吴深, 王霄, 高红霞, 刘建秀. Ni层对时效处理离心浇铸铜基轴瓦组织和性能的影响*[J]. 《材料导报》期刊社, 2017, 31(20): 68-72.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed