Please wait a minute...
材料导报  2021, Vol. 35 Issue (15): 15011-15016    https://doi.org/10.11896/cldb.20080271
  材料与可持续发展(四) ———材料再制造与废弃物料资源化利用* |
碱激发锂渣人造骨料的制备和性能表征
董必钦, 罗小龙, 田凯歌, 洪舒贤, 王琰帅
深圳大学土木与交通工程学院,深圳 518060
Preparation and Characterization of Alkali-activated Lithium Slag-basedArtificial Aggregates
DONG Biqin, LUO Xiaolong, TIAN Kaige, HONG Shuxian, WANG Yanshuai
College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
下载:  全 文 ( PDF ) ( 9262KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 锂渣是锂电池产业的重要工业废渣之一。以锂渣为原材料,利用碱激发技术制备人造骨料,并研究锂渣和激发剂用量对人造骨料性能的影响。采用颗粒强度仪测试锂渣人造骨料的单颗强度,并依照标准规范对人造骨料的其他物理性质,如成型类型、粒度分布和吸水率进行了表征与分析。使用扫描电子显微镜(SEM)研究人造骨料的微观结构,并通过X射线计算机断层扫描技术(XCT)进一步表征人造骨料内部结构。结果表明,最优配合比的骨料(LS50-6)的抗压强度可以达到5.25 MPa,并具有较高的早强性能。微观结构上,锂渣含量增加会导致骨料的致密性降低,而激发剂用量增加会导致骨料的致密性增强,且骨料的孔隙分布呈现从外到内逐渐增大的形态。这些性能使得该锂渣骨料在轻质混凝土中应用具有潜在的前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
董必钦
罗小龙
田凯歌
洪舒贤
王琰帅
关键词:  锂渣  碱激发技术  人造骨料  微观结构  力学性能    
Abstract: Lithium slag (LS) is one of waste residues in the lithium battery industry.In this paper, the LS-based artificial aggregate was designed and prepared through alkali-activated technology, during which the mix proportion of lithium slag and alkali activator was experimentally studied. The single-particle strength of LS-based artificial aggregate was measured by a particle strength meter, while the physical properties of such aggregates, such as pelleting types, particle size and water absorption, were characterized according to national standard codes. The microstructure of LS-based artificial aggregate was studied by scanning electron microscope (SEM). In particular, the internal pore structure of the aggregate was further analyzed by X-ray computed tomography (XCT). The results showed that the optimized aggregates (i.e., LS50-6) held the compressive strength of 5.25 MPa, reaching the final compressive strength in 3 days. In terms of microstructure, the density of produced aggregate decreased with the increase of lithium slag content, but increased with the activator dosage. The internal pore distribution of the LS-based artificial aggregate sized up from the surface to the center. These properties of LS-based artificial aggregates indicated that such aggregate could be potentially used in lightweight concrete.
Key words:  lithium slag    alkali-activated technology    artificial aggregates    microstructure    mechanical property
               出版日期:  2021-08-10      发布日期:  2021-08-31
ZTFLH:  TU526  
基金资助: 国家自然科学基金(U1801254;51925805)
作者简介:  董必钦,中国共产党党员,深圳大学教授,香港科技大学哲学博士,博士研究生导师,广东省滨海土木工程耐久性重点实验室副主任,2019年获得国家自然科学基金杰出青年基金。本科和硕士毕业于浙江大学材料科学与工程专业,随后在香港科技大学攻读博士学位。现已发表学术论文130余篇,获得授权专利26项。
王琰帅,博士,深圳大学助理教授,硕士研究生导师,博士毕业于香港理工大学土木及环境工程学系,师从戴建国教授。主要从事可持续生态建筑材料研究,包括绿色建材设计、建筑材料耐久性及性能评估、灰渣废弃物资源化及再生应用等。现在已发表SCI论文22篇,包括Cement and Concrete ResearchCement Concrete & CompositesNDT&E InternationalJournal of Cleaner ProductionChemosphere等,申请国内外专利16项,目前已获得国内授权专利6项。
引用本文:    
董必钦, 罗小龙, 田凯歌, 洪舒贤, 王琰帅. 碱激发锂渣人造骨料的制备和性能表征[J]. 材料导报, 2021, 35(15): 15011-15016.
DONG Biqin, LUO Xiaolong, TIAN Kaige, HONG Shuxian, WANG Yanshuai. Preparation and Characterization of Alkali-activated Lithium Slag-basedArtificial Aggregates. Materials Reports, 2021, 35(15): 15011-15016.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20080271  或          http://www.mater-rep.com/CN/Y2021/V35/I15/15011
1 Lai X J, Shankman D, Huber C, et al. Journal of Hydrology,2014,519,1698.
2 Ann K Y, Song H W. Corrosion Science,2007,49(11),4113.
3 Zhang R, Castel A, Francois R. Cement and Concrete Research,2010,40(3),415.
4 Etxeberria M, Vazquez E, Mari A, et al. Cement and Concrete Research,2007,37(5),735.
5 Khatib J M. Cement and Concrete Research,2005,35(4),763.
6 Fan C C, Huang R, Hwang H, et al. Construction and Building Mate-rials,2016,112,708.
7 He Z H, Du S G, Chen D. Journal of Hazardous Materials,2018,353,35.
8 Chen D, Hu X, Shi L, et al. Applied Clay Science,2012,59-60,148.
9 Tan H B, Zhang X, He X Y, et al. Journal of Cleaner Production,2018,205,536.
10 Qin Y, Chen J, Li Z, et al. Advances in Materials Science and Enginee-ring, DOI:10.1155/2019/8974625.
11 Karrech A, Dong M, Elchalakani M, et al. Construction and Building Materials, DOI:10.1016/j.conbuildmat.2019.116740.
12 Provis J L. Materials and Structures,2014,47(1-2),11.
13 Pacheco-Torgal F, Castro-Gomes J, Jalali S. Construction and Building Materials,2008,22(7),1305.
14 Liu Z, Wang J X, Li L, et al. Journal of Materials in Civil Engineering,2019,31(12),04019312.
15 Sakulich A R, Anderson E, Schauer C, et al. Construction and Building Materials,2009,23(8),2951.
16 Luukkonen T, Abdollahnejad Z, Yliniemi J, et al. Cement and Concrete Research,2018,103,21.
17 Fernandez-Jimenez A, Palomo A. Cement and Concrete Research,2005,35(10),1984.
18 Palomo A, Grutzeck M W, Blanco M T. Cement and Concrete Research,1999,29(8),1323.
19 Provis J L, Bernal S A. Annual Review of Materials Research,2014,44,299.
20 Puertas F, Martinez-Ramirez S, Alonso S, et al. Cement and Concrete Research,2000,30(10),1625.
21 Song S, Sohn D, Jennings H M, et al. Journal of Materials Science,2000,35(1),249.
22 Liu Z, Wang J, Jiang Q, et al. Journal of Cleaner Production,2019,225,1184.
23 Abdullah A, Abdullah M M A B, Hussin K B, et al. AIP Conference Proceedings, DOI:10.1063/1.5080915.
24 Hankrishnan K I, Ramamurthy K. Waste Management,2006,26(8),846.
25 Baykal G, Doven A G. Resources Conservation and Recycling,2000,30(1),59.
26 Sivakumar A, Gomathi P. Journal of Civil Engineering and Construction Technology,2012,3(2),42.
27 Li Y D, Wu D F, Zhang J P, et al. Powder Technology,2000,113(1-2),176.
28 Ul Rehman M, Rashid K, Ulhaq E, et al. Construction and Building Materials,2020,232(1-2),117290.
29 Yliniemi J, Nugteren H, Illikainen M, et al. International Journal of Mineral Processing,2016,149,42.
[1] 刘宝友, 岳新艳, 冯东, 茹红强, 刘春明. 碳含量对无压烧结碳化硅陶瓷的显微组织和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 169-171.
[2] 曾纪军, 高占远, 阮冬. 氧化石墨烯水泥基复合材料的性能及研究进展[J]. 材料导报, 2021, 35(Z1): 198-205.
[3] 孙茹茹, 王振, 黄法礼, 易忠来, 袁政成, 谢永江, 李化建. 不同岩性石粉-水泥复合胶凝材料性能研究[J]. 材料导报, 2021, 35(Z1): 211-215.
[4] 石妍, 李家正, 李杨, 韩炜. 混凝土表面热喷涂陶瓷防护涂层的可行性试验研究[J]. 材料导报, 2021, 35(Z1): 238-241.
[5] 周祥, 赵华堂, 李亮, 杜浪, 周双福, 邵瞾, 张晓敏. Si-Mn矿粉粒度对复合胶凝体系水化机理和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 279-283.
[6] 徐连勇, 高雅琳, 赵雷, 韩永典, 荆洪阳. Hastelloy X激光熔覆工艺及组织性能[J]. 材料导报, 2021, 35(Z1): 357-361.
[7] 薛河, 刘吉, 张顺, 张建龙, 孙裕满, 毕跃起. 基于UMAT焊接接头力学性能连续变化的表征方法及应用[J]. 材料导报, 2021, 35(Z1): 362-366.
[8] 姚刚, 刘衍腾, 邓云华, 续润洲, 赵伟. 钛合金蜂窝壁板楔形件静强度测试及失效模式分析[J]. 材料导报, 2021, 35(Z1): 367-370.
[9] 刘甲, 陈高澎, 马照伟, 雷小伟, 贾晓飞, 崔永杰. 钛合金混合保护气等离子弧焊接头组织及性能[J]. 材料导报, 2021, 35(Z1): 371-373.
[10] 曾小川, 李学军, 邓小云, 胡侨丹, 尤磊. SA508 Gr.4N钢的辐照脆化性能研究进展[J]. 材料导报, 2021, 35(Z1): 438-442.
[11] 田飞, 蔺宏涛, 江海涛. 高强度钢QP980激光焊接头的微观组织与力学性能[J]. 材料导报, 2021, 35(Z1): 447-453.
[12] 李伟培, 何世杰, 邱志明, 吴松平, 严玉蓉. 载体孔属性对多孔复合PCMs热性能的影响:综述[J]. 材料导报, 2021, 35(Z1): 495-500.
[13] 杨达, 卢明阳, 宋迪, 白书霞, 张国华, 胡秀颖, 庞来学. 地质聚合物水泥的研究进展[J]. 材料导报, 2021, 35(Z1): 644-649.
[14] 李道秀, 韩梦霞, 张将, 彭银江, 孙谦谦, 刘桂亮, 刘相法. 细晶Al-Si-Mg合金的组织遗传性与高屈服强度设计[J]. 材料导报, 2021, 35(9): 9003-9008.
[15] 聂金凤, 范勇, 赵磊, 刘相法, 赵永好. 颗粒增强铝基复合材料强韧化机制的研究新进展[J]. 材料导报, 2021, 35(9): 9009-9015.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed