Please wait a minute...
材料导报  2021, Vol. 35 Issue (22): 22001-22005    https://doi.org/10.11896/cldb.20080092
  无机非金属及其复合材料 |
NiCuZn-Sr(Nb0.5Al0.5)0.1Ti0.9O3磁介复合陶瓷材料的磁介性能研究
韩玉强1, 李明海1, 梅军1, 吴付岗1, 王小龙1, 刘成2
1 中国工程物理研究院总体工程研究所,绵阳 621900
2 电子科技大学电子科学与工程学院,成都 610054
Study on the Magnetic and Dielectric Properties of NiCuZn-Sr(Nb0.5Al0.5)0.1Ti0.9O3 Magneto-Dielectric Composite Ceramics
HAN Yuqiang1, LI Minghai1, MEI Jun1, WU Fugang1, WANG Xiaolong1, LIU Cheng2
1 Institute of Systems Engineering, China Academy of Engineering Physics, Mianyang 621900, China
2 School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
下载:  全 文 ( PDF ) ( 4577KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 现代移动通信技术的高速发展对各类电子设备的小型化、多功能化提出了新的要求。开发性能优良的新型磁介复合材料成为元器件小型化的解决方案之一。本工作采用固相烧结法分别合成了NiCuZn铁氧体材料以及Sr(Nb0.5Al0.5)0.1Ti0.9O3介电材料,然后将两者按照一定比例复合,研究了不同铁氧体/介电相含量对磁介复合陶瓷材料磁性能与介电性能的影响,并对其微观形貌与相结构进行了探究。研究结果表明,当铁氧体含量在0.7~0.8时,复合材料致密性最好,磁性能与介电性能较为优良。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
韩玉强
李明海
梅军
吴付岗
王小龙
刘成
关键词:  尖晶石  陶瓷  磁介复合  固相反应    
Abstract: The rapid development of modern mobile communication technology puts more challenges on electronic device miniaturization and multifunction. Exploring new magneto-dielectric composite materials with excellent performance is one of the solutions for device miniaturization. In this paper, NiCuZn ferrite and Sr(Nb0.5Al0.5)0.1Ti0.9O3 dielectric materials were synthesized via the solid-state reaction method. Then they were mixed in a certain proportion. The effects of different ratios between the ferrite and dielectric phases on the magnetic and dielectric properties were investigated. The microstructure was also explored. The experimental results suggest that the ferrite content is 0.7—0.8, at which fully densified morphology and superior magnetic-dielectric performance are obtained.
Key words:  spinel    ceramics    magneto-dielectric composite    solid state reaction
出版日期:  2021-11-25      发布日期:  2021-12-13
ZTFLH:  TM284  
基金资助: 国防科技工业局核能开发专项项目;四川省科技计划重点研发项目(2020YFG0108)
通讯作者:  c_liu@uestc.edu.cn   
作者简介:  韩玉强,2010年6月,毕业于山东大学,获得工学硕士学位,主要从事超声固体应力测试、材料力学性能测试等方面的研究。
刘成,博士,电子科技大学副教授。主要从事微波介电、铁电压电、LTCC与磁介复合材料及器件的研发。
引用本文:    
韩玉强, 李明海, 梅军, 吴付岗, 王小龙, 刘成. NiCuZn-Sr(Nb0.5Al0.5)0.1Ti0.9O3磁介复合陶瓷材料的磁介性能研究[J]. 材料导报, 2021, 35(22): 22001-22005.
HAN Yuqiang, LI Minghai, MEI Jun, WU Fugang, WANG Xiaolong, LIU Cheng. Study on the Magnetic and Dielectric Properties of NiCuZn-Sr(Nb0.5Al0.5)0.1Ti0.9O3 Magneto-Dielectric Composite Ceramics. Materials Reports, 2021, 35(22): 22001-22005.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20080092  或          http://www.mater-rep.com/CN/Y2021/V35/I22/22001
1 Zhang H W, Zhong H, Liu B Y, et al. IEEE Transactions on Magnetics, 2005, 41, 3454.
2 Qi X, Zhou J, Yue Z, et al. Journal of Magnetism and Magnetic Materials,2004, 269, 352.
3 Ma R, Cheng Y T, Liu W L, et al. Journal of the European Ceramic Society, 2018, 38, 5367.
4 Zhang T, Su H, Tang X, et al. IEEE Transactions on Magnetics, 2014, 50(11), 1.
5 Jain A, Panwar A K, Jha A K. Materials Research Bulletin, 2018, 100, 367.
6 Mu C H, Liu Y L, Zhang H W, et al. Journal of Applied Physics, 2010, 107(9), 09A511.
7 Hsiang H I, Chen T H. Ceramics International, 2009, 35, 2035.
8 Hsiang H I, Cheng P W, Yen F S. Ceramics International, 2012, 38, 4915.
9 Chen S, Li L, Yu S, et al. Journal of the American Ceramic Society, 2018, 101, 1835.
10 Wang Y Z, Zhou H Q, Qi H Q, et al. Ceramics International, 2015, 41(9) Part B, 12253.
11 Rezlescu N, Rezlescu E. Physica Status Solidi(a), 1974, 23(2), 575.
12 Efros A L, Shklovskii B I. Physica Status Solidi(b),1976,76(2),475.
13 Xiao Z H, Sun X Y, Zhang H F. Journal of Alloys and Compounds, 2018, 751, 28.
14 Phansamdaeng P, Khemprasi J. Journal of Alloys and Compounds, 2019, 776, 105.
15 Xiao B, Tang Y, Ma G D, et al. Applied Physics A, 2015, 119, 1291.
[1] 马新, 邱海鹏, 梁艳媛, 刘善华, 王晓猛, 赵禹良, 陈明伟, 谢巍杰. CVD BN界面层对Si3N4/SiBN复合材料弯曲性能的影响[J]. 材料导报, 2021, 35(z2): 86-89.
[2] 周强, 田业冰, 于宏林, 范增华, 钱乘, 孙志光. 超粗糙氧化锆复合陶瓷磁性剪切增稠光整加工特性[J]. 材料导报, 2021, 35(z2): 97-100.
[3] 靳学昌, 高珺, 李岩, 陈将俊, 刘春静, 赵宁. 玻璃粉体系对MLCC用铜电极浆料性能的影响[J]. 材料导报, 2021, 35(z2): 294-297.
[4] 侯鹏程, 王永亮, 韩志东, 王春锋. 聚碳硅烷协效氢氧化镁阻燃聚乙烯复合材料的残炭结构演变[J]. 材料导报, 2021, 35(z2): 525-528.
[5] 杨俊, 何创创, 罗小芳, 尚勇, 班秀峰. 掺RuO2对Mn1.4Co1.5Zn0.1陶瓷电性能的影响[J]. 材料导报, 2021, 35(Z1): 56-58.
[6] 武梓诺, 贾泓钰, 张宇晴, 陈旸. 口腔托槽用ZTA陶瓷材料凝胶注模成型工艺的研究[J]. 材料导报, 2021, 35(Z1): 100-103.
[7] 王志勇, 蔡志祥, 刘国承, 孙智龙, 张铁. HAP-TCP复合生物陶瓷浆料的激光3D打印及性能研究[J]. 材料导报, 2021, 35(Z1): 104-107.
[8] 唐杰, 杨勇, 黄政仁. 碳化硅陶瓷浆料基3D打印研究进展[J]. 材料导报, 2021, 35(Z1): 172-179.
[9] 周果, 孙红娟, 彭同江. Na2CO3助熔剂与基于石棉尾矿微晶陶瓷晶相转变和理化性能的关联规律探索[J]. 材料导报, 2021, 35(7): 7013-7018.
[10] 同帜, 黄开佩, 杨博文, 张健需. 低成本新型多孔陶瓷膜支撑体的制备及性能[J]. 材料导报, 2021, 35(6): 6054-6059.
[11] 郭启龙, 王晓庆, 王璟, 裴军军, 李俊国, 张联盟. 原位反应烧结Zr2Al4C5化合物增韧ZrB2-SiC复相陶瓷的制备工艺及力学性能[J]. 材料导报, 2021, 35(6): 6065-6070.
[12] 路畅, 陈洪运, 傅梁杰, 田光燕, 张红, 梁金生, 杨华明. 铁尾矿制备新型建筑材料的国内外进展[J]. 材料导报, 2021, 35(5): 5011-5026.
[13] 李恩重, 郭伟玲, 刘军, 于鹤龙, 徐滨士. 先驱体转化陶瓷涂层的裂解方法研究进展[J]. 材料导报, 2021, 35(21): 21151-21158.
[14] 余先纯, 孙德林, 计晓琴, 王张恒. 木质素基碳纳米片组装木陶瓷电极的结构调控与电化学储能[J]. 材料导报, 2021, 35(2): 2012-2018.
[15] 王东哲, 秦溶蔓, 孙娜, 杜明远, 腾凌虹, 曹伟伟, 朱波. 陶瓷/纤维复合装甲抗弹丸侵彻性能的试验与数值模拟研究[J]. 材料导报, 2021, 35(18): 18216-18221.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed