Please wait a minute...
材料导报  2021, Vol. 35 Issue (20): 20161-20165    https://doi.org/10.11896/cldb.20070039
  高分子与聚合物基复合材料 |
埋入式光纤智能复合材料简化界面的应变传递分析
刘荣梅1, 赵振1, 白树伟2
1 南京航空航天大学航空学院,南京 210016
2 上海机电工程研究所,上海 201109
Strain Transfer Analysis of Simplified Interface of Embedded Optical Fiber Smart Composites Material
LIU Rongmei1, ZHAO Zhen1, BAI Shuwei2
1 College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016,China
2 Shanghai Electro-Mechanical Engineering Institute,Shanghai 201109, China
下载:  全 文 ( PDF ) ( 5014KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 光纤埋入复合材料后会因与复合材料铺层方向不同而形成眼状界面。本研究通过面积等效的方式将眼状界面简化为圆形,建立应变传递模型,并基于有限元分析对模型进行验证,对比分析了简化界面与眼状界面模型多个位置的应变传递率。通过有限元软件计算出两种界面模型在拉伸载荷下的平均应变传递速率,与实验对比结果表明:简化界面模型与眼状界面模型在各点的应变传递率吻合较好,有限元计算结果与实验相匹配,简化后的界面模型可以替代眼状界面模型进行应变传递分析。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘荣梅
赵振
白树伟
关键词:  界面  光纤  应变传递  拉伸  复合材料    
Abstract: When the optical fiber is buried in the composite material, an eye-shaped interface is formed due to the difference in the direction of the lay-up layer with the composite material. The eye-shaped interface is now simplified to a circle by area equivalence, a strain transfer model is established, and the model is evaluated based on finite element analysis.The average strain transfer rate of the two interface models under tensile load is calculated by finite element software and compared with the experiments. The results show that: the average strain transmittance of the two interface models under simulated tensile load is compared with that of the ophthalmic model. The strain transfer rate of the interface model at each point agrees well, and the results of the finite element calculations match with the experiments. The simplified interface model can replace the eye-shaped interface model for strain transfer analysis.
Key words:  interface    fiber    strain transfer    tensile    composite material
               出版日期:  2021-10-25      发布日期:  2021-11-12
ZTFLH:  TP212  
基金资助: 国家自然科学基金(11402112)
通讯作者:  romme@nuaa.edu.cn   
作者简介:  刘荣梅,女,副教授。1997年获南京航空航天大学材料学专业学士学位;2000年获南京航空航天大学材料学专业硕士学位;2011年获测试计量技术及仪器专业博士学位;2017年南京航空航天大学机械工程博士后出站。2013年3月至2014年4月,伊利诺伊大学芝加哥分校访问学者。2002年起,在南京航空航天大学航空学院基础力学与测试系就职,江苏省力学学会第八届实验力学专业委员会委员。编写教材3部,从事光纤智能材料结构方向研究,以第一作者发表科研论文20余篇,其中数篇被SCI、EI收录,主持国家自然基金项目、江苏省博士后科学基金等项目。
引用本文:    
刘荣梅, 赵振, 白树伟. 埋入式光纤智能复合材料简化界面的应变传递分析[J]. 材料导报, 2021, 35(20): 20161-20165.
LIU Rongmei, ZHAO Zhen, BAI Shuwei. Strain Transfer Analysis of Simplified Interface of Embedded Optical Fiber Smart Composites Material. Materials Reports, 2021, 35(20): 20161-20165.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20070039  或          http://www.mater-rep.com/CN/Y2021/V35/I20/20161
1 Zhang W C, Guan Z D, Li S Q, et al. Science Technology and Enginee-ring,2015,15(3),163(in Chinese).
张文超,关志东,李思琪,等.科学技术与工程,2015,15(3),163.
2 Yan Y J, Jiang J S, Gu S N. Measurement & Control Technology,1996(4),3(in Chinese).
阎云聚,姜节胜,顾松年.测控技术,1996(4),3.
3 Holmes C, Godfrey M, Bull D J, et al. Optics and Lasers in Engineering,2020,133,106111.
4 Dong X M, Zhang W G. Measurement & Control Technology,2004(10),3(in Chinese).
董晓马,张为公.测控技术,2004(10),3.
5 Cox H L. British Journal of Applied Physics,1951,3(3),72.
6 Ansari F, Yuan L. Journal of Engineering Mechanics,1998,124(4),385.
7 Lau K T, Yuan L, Zhou L M, et al. Composite Structure,2001,51(1),9.
8 Li D S, Li H N. Chinese Journal of Theoretical and Applied Mechanics,2005(4),435(in Chinese).
李东升,李宏男.力学学报,2005(4),435.
9 Zhou Z, Li Y L, Ou J P. Journal of Harbin Institute of Technology,2006(1),49(in Chinese).
周智,李冀龙,欧进萍.哈尔滨工业大学学报,2006(1),49.
10 Chang X L, Li M, Wang W P, et al. Laser & Infrared,2010,40(5),515(in Chinese).
常新龙,李明,王渭平,等.激光与红外,2010,40(5),515.
11 Bao T F, Li J M, Zhao J L. Journal of Zhejiang University (Engineering Science),2018,52(12),2342(in Chinese).
包腾飞,李涧鸣,赵津磊.浙江大学学报(工学版),2018,52(12),2342.
12 Sun Y J, Zhang Q, Cheng G, et al. Science Technology and Engineering,2018,18(33),46(in Chinese).
孙义杰,张强,程刚,等.科学技术与工程,2018,18(33),46.
13 Mao N N, Su H Z, Li P P. Water Resources and Power,2019,37(9),120(in Chinese).
毛宁宁,苏怀智,李鹏鹏.水电能源科学,2019,37(9),120.
14 Liu R M. Research on strength of optical smart structure based on interface analysis. Ph.D. Thesis, Nanjing University of Aeronautics and Astronautics, China,2010(in Chinese).
刘荣梅.基于界面分析的光纤智能复合材料结构强度性能研究.博士学位论文,南京航空航天大学,2010.
15 Zhu L J. Research on sensing and mechanical properties of embedded optical fiber smart composite materials. Master’s Thesis, Nanjing University of Aeronautics and Astronautics, China,2018(in Chinese).
朱路佳.埋入式光纤智能复合材料传感与力学性能研究.硕士学位论文,南京航空航天大学,2018.
[1] 任世强, 于筱, 马帅, 刘琨, 王淋, 由晴. 植骨材料在口腔种植中的应用概况及进展[J]. 材料导报, 2021, 35(Z1): 94-99.
[2] 刘林涛, 张勇, 吕海兵, 何飞. EB-PVD热障涂层粘结层/TGO界面性能的研究进展[J]. 材料导报, 2021, 35(Z1): 160-162.
[3] 鲁明远, 韩保红, 赫万恒, 倪新华, 于金凤. 孔隙对陶瓷基复合材料强度影响的研究进展[J]. 材料导报, 2021, 35(Z1): 180-185.
[4] 曾纪军, 高占远, 阮冬. 氧化石墨烯水泥基复合材料的性能及研究进展[J]. 材料导报, 2021, 35(Z1): 198-205.
[5] 石妍, 李家正, 李杨, 韩炜. 混凝土表面热喷涂陶瓷防护涂层的可行性试验研究[J]. 材料导报, 2021, 35(Z1): 238-241.
[6] 朱家乐, 白羽婷, 冯思思. 氧化石墨烯/金属-有机框架复合材料在光催化中的应用[J]. 材料导报, 2021, 35(Z1): 315-321.
[7] 谭松波, 王响成, 李送送. 柔性含铅γ辐射屏蔽材料的制备及性能[J]. 材料导报, 2021, 35(Z1): 328-330.
[8] 朱冬, 张亮, 吴文恒, 卢林, 倪晓晴, 宋佳, 赵金猛, 朱文华, 顾孙望, 单小龙. 钛基复合材料激光选区熔化增材制造成形技术研究进展[J]. 材料导报, 2021, 35(Z1): 347-351.
[9] 姚刚, 刘衍腾, 邓云华, 续润洲, 赵伟. 钛合金蜂窝壁板楔形件静强度测试及失效模式分析[J]. 材料导报, 2021, 35(Z1): 367-370.
[10] 王杏娟, 曲硕, 刘然, 朱立光, 朴占龙, 邸天成, 王宇. 高钛钢专用连铸保护渣研究现状及展望[J]. 材料导报, 2021, 35(Z1): 467-472.
[11] 杨康, 李东辉, 郭义林, 马刚, 耿昊, 李群芳, 薛继佳. 某型四座电动飞机复合材料机翼剪切性能试验与分析[J]. 材料导报, 2021, 35(Z1): 485-488.
[12] 王瑞杰, 郭建业, 宋寒, 郭慧, 李文静. 酚醛气凝胶多功能复合材料的设计与性能[J]. 材料导报, 2021, 35(Z1): 548-551.
[13] 张凯, 桂泰江, 吴连锋, 郭莉莎, 郭灵敏. 导热绝缘聚合物复合材料的研究进展[J]. 材料导报, 2021, 35(Z1): 571-575.
[14] 孙朝海, 黄炎, 杨康, 姬书得, 岳玉梅. 工装模具对复合材料件固化变形影响的有限元分析[J]. 材料导报, 2021, 35(Z1): 607-612.
[15] 丁叁叁, 刘克健. 高速列车用碳纤维复合材料结构损伤修复门槛值研究[J]. 材料导报, 2021, 35(Z1): 613-616.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed