Please wait a minute...
材料导报  2021, Vol. 35 Issue (9): 9150-9156    https://doi.org/10.11896/cldb.19110101
  无机非金属及其复合材料 |
超润滑技术的发展现状
刘兴光*, 张凯锋*, 周晖, 冯兴国, 郑玉刚
兰州空间技术物理研究所真空技术与物理重点实验室,兰州 730010
Recent Advances of Superlubricity
LIU Xingguang*, ZHANG Kaifeng*, ZHOU Hui, FENG Xingguo, ZHENG Yugang
Science and Technology on Vacuum Technology Physics Laboratory, Lanzhou Institute of Physics, Lanzhou 730010, China
下载:  全 文 ( PDF ) ( 4923KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 超润滑的概念由日本科学家平野元九教授于1990年提出。2004年,人们在实验室条件下首次观察到纳米尺度下的超润滑现象。此后,国际上关于超润滑的研究变得越来越热,以石墨烯为代表的多种二维材料由于在原子和分子层尺度展现出独特的摩擦学性质,成为超润滑研究领域的主要材料。
然而,目前所观察到的可以展现出超润滑性能的材料的尺寸基本都处在纳米-微米尺度(尽管长达厘米级的双壁碳纳米管也表现出超润滑性能,但其为一维材料,在垂直于轴向的两个维度上仍然为纳米级)。主要原因是:(1)微观与宏观尺度下材料摩擦行为的差异很大,涉及同时发生的复杂的物理、化学、机械等相互作用,摩擦学机理、模型不通用;(2)宏观尺寸零部件表面的粗糙度也难以达到目前大多数超润滑现象所需的原子级平整度、光洁度等苛刻条件。因此,目前关于超润滑技术的研究大多基于二维材料,而且大多停留在严格控制条件下的实验室研究阶段。
2012年,清华大学的研究人员在真空中发现了热解石墨片的自缩回现象,首次将超润滑从纳米尺度拓展到微米尺度,为近年来超润滑研究的一个重要节点。最近,兰州空间技术物理研究所在超润滑固体薄膜及其制备技术领域取得突破,所制备的新型a-C∶H基薄膜实现了宏观尺寸零部件的长寿命超润滑,并应用于BP-1B试验卫星(2019年7月25日发射),通过了国际上首次超润滑薄膜的空间飞行验证,具有里程碑式的重要意义。
本文首先简述了超润滑材料的研究进展,随后梳理并详细介绍了八种具有代表性的超润滑现象及相关机理,具体为引入滚动摩擦、液体超润滑、结构超润滑、压力诱导能垒平坦化、弱层间作用力、接触界面同电荷互斥、控制正压力或接触点调制、量子隧穿效应,然后总结了超润滑技术的研究和应用现状,最后对超润滑技术后续的研究和应用的方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘兴光
张凯锋
周晖
冯兴国
郑玉刚
关键词:  超润滑  结构超润滑  液体超润滑  超润滑机理    
Abstract: Superlubricity, which describes the state of vanishing friction, was first proposed by Prof. Hirano in 1990. However, not until 2004, nanoscale superlubricity under high vacuum condition was observed in laboratory for the first time. Thereafter, superlubricity quickly became a new research hotspot all over the world, with graphene and other two-dimensional materials being the most intensively studied candidates, due to their unique structures and promising tribological properties.
However, the overwhelming majority of superlubricating cases are limited to nano- and microscale, despite of several cases in the range of sub-millimeter scale, and centimeter-long double-walled carbon tube exhibited superlubricity between inner and outer walls. The primary causes are: (i) the tribological behaviour between micro- and macroscales varies significantly, because what happen between the two sliding surfaces (or interfaces) are extremely complicated, i.e. the simultaneously ongoing physical, chemical and mechanical interactions and reactions, with no universal tribological mechanisms or simulation models available; (ii) macroscale components could not meet the requirements of atomically clean and smooth surfaces which are essential for most superlubricity cases observed so far. Therefore, studies on superlubricity are primarily based on two-dimensional materials and limited to strictly-controlled laboratory conditions.
In 2012, researchers from Tsinghua University observed self-retraction phenomenon in highly oriented pyrolytic graphite, pushing the superlubricating region from nanoscale to microscale. Recently, Lanzhou Institute of Physics made an important breakthrough on the fabrication and application of macroscale superlubricating solid films. A solid superlubricating film with desired properties-large scale, long service life and steady superlubricity, was prepared using reactive magnetron sputtering and applied to the moving parts of a small technology-verification satellite-BP-1B (launched on the 25th July, 2019). The a-C∶H based solid film exhibited satisfying in-space superlubricating performance, bringing this cutting-edge technology (superlubricity) into space for the first time in the world, which sets a landmark in the field of applicable superlubricity technology.
This review starts from briefing the recent progresses on superlubricating materials. Then, several typical superlubricating phenomena and the related mechanisms were summarised and described, which in details are introducing nano-scrolling, liquid superlubricity, structural superlubricity, pressure-induced friction collapse, weak interlayer interaction, electrostatic repulsion, normal force or contact modulation and quantum tunneling. Finally, some prospects in the research directions and possible applications of superlubricity technology were made.
Key words:  superlubricity    structural superlubricity    liquid superlubricity    superlubricating mechanisms
               出版日期:  2021-05-10      发布日期:  2021-05-31
ZTFLH:  O484  
  O485  
  V519  
基金资助: 中央军委装备发展部装备预研重点基金项目(61409230603);国防科技重点实验室基金(HTKJ2018KL510003)
通讯作者:  sdwfcllxg@126.com; zhangkf07@hotmail.com   
作者简介:  刘兴光,博士,毕业于英国谢菲尔德大学材料科学与工程系,导师为英国皇家工程院院士Allan Matthews教授和Adrian Leyland博士。2017年12月入中国航天科技集团公司五院第五一〇所研究所工作。从硕士阶段就开始从事表面工程技术研究工作,至今已有超过12年的相关领域的研究经验。对激光表面改性、物理气相沉积(以磁控溅射为主)的真空镀膜技术有多年的经验,对固体润滑薄膜结构设计、制备和显微表征分析有超过6年的研究基础,对XRD、AFM、FIB/SEM、SEM/EDX、HRTEM、STEM、EELS、EFTEM等多种材料分析表征手段及相关仪器的使用和操作拥有丰富的经验。与同事一起组织、主办了全英摩擦学会议TriboUK 2014。参加了ICMCTF(两次)、TriboUK(三次)、EUROMAT2017、2nd Workshop on “Superlubricity at nano and mesoscales”等多个表面工程及材料科学领域的高水平国际会议。在Acta Materialia,Scientific Reports,Applied Surface Science,Surface and coatings Technology等材料科学及表面工程领域高水平代表性期刊上发表SCI一区、二区等论文9篇。
张凯锋,高级工程师,硕士研究生导师。2007年毕业于兰州大学,获理学博士学位,同年入航天五院510所工作。长期从事基于航天器应用的表面工程技术研究。近年来,承担各类研发项目11项,解决了一批制约我国航天器/武器发展的瓶颈问题,发表学术论文30余篇,他引400余次,申请国家发明专利11项,主导制定国家军用标准3项。
引用本文:    
刘兴光, 张凯锋, 周晖, 冯兴国, 郑玉刚. 超润滑技术的发展现状[J]. 材料导报, 2021, 35(9): 9150-9156.
LIU Xingguang, ZHANG Kaifeng, ZHOU Hui, FENG Xingguo, ZHENG Yugang. Recent Advances of Superlubricity. Materials Reports, 2021, 35(9): 9150-9156.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19110101  或          http://www.mater-rep.com/CN/Y2021/V35/I9/9150
1 Dowson D. History of tribology (2nd edition), Professional Engineering Publishing, London, UK,1998.
2 Szeri A Z. Tribology: friction, lubrication, and wear hemisphere, Hemisphere Publishing Corp., Carlsbad, USA,1980.
3 Holmberg K, Erdemir A. Friction,2017,5,263.
4 Holmberg K, Andersson P, Erdemir A. Tribology International,2012,47,221.
5 Hirano M. Friction,2014,2,95.
6 Hirano M, Kuzumasa S. Physical Review B, 1990,41,11837.
7 Dienwiebel M, Verhoeven G S, Pradeep N, et al. Physical Review Letters,2004,92,126101.
8 Kawai S, Benassi A, Gnecco E, et al. Science,2016,351,957.
9 Zheng Q S, Jiang B, Liu S P, et al. Physical Review Letters,2008 100,067205.
10 Liu Z, Yang J, Grey F, et al. Physical Review Letters,2012 108,205503.
11 Song Y M, Mandelli D, Hod O, et al. Nature Materials,2018 17,894.
12 Cui L C, Zhou H, Zhang K F, et al. Tribology International,2008,117,107.
13 Song H, Ji L, Li H, et al. ACS Applied Materials & Interfaces,2016,8,6639.
14 Li H, Wang J H, Gao S, et al. Advanced Materials,2017 29,1701474.
15 Tomizawa H,Fischer T E. ASLE Trans,1987,30,41.
16 Spikes H, Tysoe W. Tribology Letters,2015,59,21.
17 Khajeh A, He X, Yeon J, et al. Langmuir,2018,34,5971.
18 Zhou Y, Qu J. ACS Applied Materials & Interfaces,2017,9,3209.
19 Chen M, Briscoe W H, Armes S P, et al. Science,2009,323,1698.
20 Nomura A, Okayasu K, Ohno K, et al. Macromolecules,2011,44,5013.
21 Ron T, Javakhishvili I, Hvilsted S, et al. Advanced Materials Interfaces,2016,3,1500472.
22 Sweeney J, Florian H, Hayes R, et al. Physical Review Letters,2012,109,155502.
23 Fajardo O Y, Bresme F, Kornyshev A A, et al. Scientific Reports,2015,5,7698.
24 Novoselov K S, Geim A K, Morozov S V, et al. Science,306,2004,666-669.
25 Ashton M, Paul J, Sinnott S B, et al. Physical Review Letters,2017,118,106101.
26 Berman D, Erdemir A, Sumant A V, et al. ACS Nano,2018,12,2122.
27 Diana Berman, Erdemir A, Sumant A V. Carbon,2013,59,167.
28 Berman D, Deshmukh S A, Sankaranarayanan S K, et al. Science,2015,348,1118.
29 Klein J, Kumacheva E, Mahalu D, et al. Nature,1994,370,634.
30 Raviv U, Giasson S, Kampf N, et al. Nature,2003,425,163.
31 Muller M, Lee S, Spikes H A, et al. Tribological Letters,2003,15,395.
32 Yan X P, Perry S S, Spencer N D, et al. Langmuir,2004,20,423.
33 Ma L R, Gaisinskaya-Kipnis A, Kampf N, et al. Nature Communications,2015,6,6060.
34 Leven I, Krepel D, Shemesh O, et al. The Journal of Physical Chemistry Letters,2013,4,115.
35 Sun J H, Zhang Y N, Lu Z B, et al. The Journal of Physical Chemistry Letters,2018,9,2554.
36 Prandtl L. Journal of Applied Mathematics and Mechanics,1928,8,85.
37 Tomlinson G A. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science,1929,7(46),905.
38 Socoliuc A, Bennewitz R, Gnecco E, et al. Physical Review Letters,2004,92,134301.
39 Gnecco E, Roth R, Baratoff A. Physical Review B,2012,86,035443.
40 Zhong W, Tomanek D. Physical Review Letters,1990,64,3054.
41 Riedo E, Gnecco E, Bennewitz R, et al. Physical Review Letters,2003,91,084502.
42 Medyanik S N, Liu W K, Sung I H, et al. Physical Review Letters,2006,97,136106.
43 Socoliuc A, Gnecco E, Maier S, et al. Science,2006,313,207.
44 Zanca T, Pellegrini F, Santoro G E, et al. Proceedings of the National Academy of Sciences,2018,115,3547.
45 Martin J M, Donnet C, Le Mogne T, et al. Physical Review B Condensed Matter,1993,48,10583.
46 Erdemir A, Eryilmaz O. Friction,2014,2,140.
47 Erdemir A, Eryilmaz O L. Fenske G. Journal of Vacuum Science & Technology A,2000,18,1987.
48 Xu J, Li J J. Friction,2015,3(4),344.
49 Vanossi A, Manini N, Urbakh M, et al. Reviews of Modern Physics,2013,85,529.
50 Li P, Ju P, Ji L, et al. Advanced Materials,2020,32,2002039.
51 Yoshizawa H, Chen Y L, Israelachvili J. The Journal of Physical Chemistry,1993,97,4128.
52 Park J Y, Salmeron M. Chemical Reviews,2014,114,677.
53 Krim J. Surface Science,2002,500,741.
54 Krim J. Langmuir,1996,12,4564.
55 Clauss F J. Solid Lubricants and Self-Lubricating Solids, Elsevier, Amsterdam, Netherlands,2012.
56 Cameron A. The Principles of Lubrication, Wiley, Hoboken, NJ, USA,1966.
57 Hamrock B J, Schmid S R, Jacobson B O. Fundamentals of Fluid Film Lubrication, CRC Press, Boca Raton, FL, USA,2004.
58 Geim A K. Science,2009,324,1530.
59 Geim A K, Novoselov K S. Nature Materials,2007,6,183.
60 Liu Y Q, Liu Y, Chen Y J, et al. Journal of Chongqing Technology and Business University (Natural Science Edition),2017,34(3),107(in Chinese).
柳云骐,刘赟,陈艳巨,等.重庆工商大学学报(自然科学版),2017,34(3),107.
61 Mas-Balleste R, Gomez-Navarro C, Gomez-Herrero J, et al. Nanoscale,2011,3,20.
62 Novoselov K S, Falko V I, Colombo L, et al. Nature,2012,490,192.
[1] 崔龙辰, 王军军, 黄伟九. 类聚合物碳薄膜的制备及其摩擦学研究进展[J]. 材料导报, 2019, 33(5): 797-804.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed