Please wait a minute...
材料导报  2025, Vol. 39 Issue (24): 24120023-7    https://doi.org/10.11896/cldb.24120023
  金属与金属基复合材料 |
激光熔覆制备BCC/FCC梯度涂层及其磨损和拉伸性能的研究
董照帅, 李新梅*, 贾黎明, 贾海洋, 闫芷琪, 巫理平
新疆大学材料科学与工程学院,乌鲁木齐 830047
Study on Wear and Tensile Properties of Laser Cladded BCC/FCC Gradient Coatings
DONG Zhaoshuai, LI Xinmei*, JIA Liming, JIA Haiyang, YAN Zhiqi, WU Liping
School of Materials Science and Engineering, Xinjiang University, Urumqi 830047, China
下载:  全 文 ( PDF ) ( 53971KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在合金材料领域,实现强度和韧性的同步提升是一个重要的课题。本工作选用CoCrFeNi和AlCoCrFeNi两种异质高熵合金材料,通过精心的结构设计和激光工艺优化,成功制备了一种外硬内韧的新型高熵合金梯度涂层。该涂层具有原位形成的双相界面层,其微观结构从顶部到底部依次为单相体心立方(BCC)、BCC/面心立方(FCC)双相、单相FCC,形成了独特的相梯度结构。硬度测试显示,涂层的硬度从顶部的530HV0.2递减至中部的350HV0.2,再至底部的200HV0.2,这一梯度变化与BCC相含量的减少趋势一致。摩擦性能测试结果表明,这种梯度涂层展现出卓越的耐磨性能,摩擦系数为0.51,磨损率低至4.8×10-5 mm3/(N·m),磨损机理主要为粘着磨损。此外,拉伸试验证实了涂层不仅具有出色的抗拉强度,还具备良好的延展性。这种优异的力学性能得益于涂层中双相界面层的生成,该界面层缓解了高硬度层与高韧性层之间的结构和性能差异,减少了应力集中,从而稳定了涂层的整体结构。综上所述,本工作不仅为开发具有综合强度和韧性的新型高熵合金涂层提供了新的方法和理论,还可用于指导类似高熵合金梯度涂层结构的开发和设计,具有重要的应用价值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
董照帅
李新梅
贾黎明
贾海洋
闫芷琪
巫理平
关键词:  激光熔覆  AlCoCrFeNi  梯度涂层  耐磨性  拉伸性能    
Abstract: In the field of alloy materials, achieving a simultaneous enhancement of strength and toughness is an important topic. This study selected CoCrFeNi and AlCoCrFeNi two heterogeneous high-entropy alloy materials, and successfully prepared a new type of high-entropy alloy gradient coating with an outer hard and inner tough structure through careful structural design and laser process optimization. The coating had an in-situ formed dual-phase interface layer, with its microstructure transitioning from a single-phase body-centered cubic (BCC) at the top, to a BCC/face-centered cubic (FCC) dual-phase in the middle, and finally to a single-phase FCC at the bottom, forming a unique phase gradient structure. Hardness tests showed that the hardness of the coating decreased from 530HV0. 2 at the top to 350HV0. 2 in the middle, and then to 200HV0. 2 at the bottom, which was consistent with the trend of decreasing BCC phase content. Friction performance tests indicated that this gradient coating exhibited excellent wear resistance, with a friction coefficient of 0. 51 and a wear rate as low as 4. 8×10-5 mm3/(N·m), with the primary wear mechanism being adhesive wear. Additionally, tensile tests confirmed that the coating had excellent tensile strength and also good ductility. These excellent mechanical properties could be attributed to the formation of the dual-phase interface layer within the coating, which effectively alleviated the structural and property differences between the high-hardness layer and the high-toughness layer, reduced stress concentration, and thereby stabilized the overall structure of the coating. In summary, this study not only provides new methods and theories for the development of new high-entropy alloy coatings with comprehensive strength and toughness but also can be used to guide the development and design of similar high-entropy alloy gradient coating structures, which is of significant application value.
Key words:  laser cladding    AlCoCrFeNi    gradient coating    wear resistance    tensile property
出版日期:  2025-12-25      发布日期:  2025-12-17
ZTFLH:  TG115  
基金资助: 国家自然科学基金(52161017;52561022);新疆维吾尔自治区自然科学基金(2022D01C386)
通讯作者:  *李新梅,博士,教授,博士研究生导师,长期从事激光增材再制造、高熵合金的相关研究工作。lxmxj2009@126.com   
作者简介:  董照帅,新疆大学机械工程学院硕士研究生,在李新梅教授的指导下开展高熵合金涂层的研究。
引用本文:    
董照帅, 李新梅, 贾黎明, 贾海洋, 闫芷琪, 巫理平. 激光熔覆制备BCC/FCC梯度涂层及其磨损和拉伸性能的研究[J]. 材料导报, 2025, 39(24): 24120023-7.
DONG Zhaoshuai, LI Xinmei, JIA Liming, JIA Haiyang, YAN Zhiqi, WU Liping. Study on Wear and Tensile Properties of Laser Cladded BCC/FCC Gradient Coatings. Materials Reports, 2025, 39(24): 24120023-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24120023  或          https://www.mater-rep.com/CN/Y2025/V39/I24/24120023
1 Yeh J W, Lin S J, Chin T S, et al. Metallurgical and Materials Transactions A, 2004, 35, 2533.
2 Yeh J W, Chen S K, Lin S J, et al. Advanced Engineering Materials, 2004, 6(5), 299.
3 Chen W, Li X. Journal of Materials Research and Technology, 2024, 31, 1215.
4 Zhang X, Cui X, Jin G, et al. Journal of Alloys and Compounds, 2022, 891, 161756.
5 Otto F, Dlouhý A, Somsen C, et al. Acta Materialia, 2013, 61(15), 5743.
6 Zhang Q, Li M, Han B, et al. Journal of Alloys and Compounds, 2021, 884, 160989.
7 Li M, Zhang Q, Han B, et al. Materials Chemistry and Physics, 2021, 258, 123850.
8 Wang W R, Wang W L, Wang S C, et al. Intermetallics, 2012, 26, 44.
9 Zhou J, Cheng Y, Wan Y, et al. Journal of Alloys and Compounds, 2024, 984, 173819.
10 Raabe D, Ponge D, Dmitrieva O, et al. Advanced Engineering Materials, 2009, 11(7), 547.
11 Ma E, Zhu T. Materials Today, 2017, 20(6), 323.
12 Li L, Wang J, Lin P, et al. Ceramics International, 2017, 43(18), 16638.
13 Guévenoux C, Hallais S, Balit Y, et al. Theoretical and Applied Fracture Mechanics, 2020, 107, 102520.
14 Wang Q, Li Q, Zhang L, et al. Ceramics International, 2022, 48(6), 7905.
15 Zhang S, Sun Y, Cheng W, et al. Surface and Coatings Technology, 2023, 467, 129681.
16 Dong J L, Wu X Q, Huang C G. Intermetallics, 2022, 144, 107529.
17 Sathiyamoorth I P, Basu J, Kashyap S, et al. Materials & Design, 2017, 134, 426.
18 Ghassemali E, Sonkusare R, Biswas K, et al. Journal of Alloys and Compounds, 2017, 710, 539.
19 Yang Y, Luo X, Ma T, et al. Journal of Alloys and Compounds, 2021, 864, 158717.
20 Fan Q, Chen C, Fan C, et al. Surface and Coatings Technology, 2021, 418, 127242.
21 Guo S, Ng C, Lu J, et al. Journal of Applied Physics, 2011, 109(10), 103505.
22 Huang L, Sun Y, Amar A, et al. Vacuum, 2021, 183, 109875.
23 Guo C, Wei S, Wu Z, et al. Materials & Design, 2023, 228, 111847.
24 Yang S, Lu J, Xing F, et al. Acta Materialia, 2020, 192, 11.
25 Zhang Y, Zhou Y J, Lin J P, et al. Advanced Engineering Materials, 2008, 10(6), 534.
26 Guan Y, Cui X, Chen D, et al. Surface and Coatings Technology, 2023, 464, 129569.
27 Wen X, Cui X, Jin G, et al. Surface and Coatings Technology, 2021, 405, 126728.
28 Huang T C, Hsu S Y, Lai Y T, et al. Surface and Coatings Technology, 2021, 425, 127713.
29 Fontalvo G A, Daniel R, Mitterer C. Tribology International, 2010, 43(1-2), 108.
30 Sun Z, Tan X P, Descoins M, et al. Scripta Materialia, 2019, 168, 129.
[1] 俞伟元, 景瑞, 董鹏飞, 吴保磊, 李扬, 强潇. 高速激光熔覆Fe基非晶涂层裂纹及组织分析[J]. 材料导报, 2025, 39(7): 24030107-6.
[2] 高峰, 郭策安, 张健. 身管内壁铬钽及其合金涂层研究进展[J]. 材料导报, 2025, 39(7): 24010200-8.
[3] 雷经发, 赵晨霞, 刘涛, 沈朝阳, 李思悦. 激光熔覆Inconel 625合金高温高应变率下的力学行为及本构模型[J]. 材料导报, 2025, 39(4): 23120263-7.
[4] 张泽疆, 李新梅, 朱春金, 李航, 杨定力. 纳米TiB2对CoCrFeNiSi高熵合金涂层耐磨与耐蚀性能的影响[J]. 材料导报, 2025, 39(3): 23090210-9.
[5] 刘果, 张健, 庞小通, 郭永伟, 胡耀文. 金刚石增强镍基耐磨涂层的制备及性能研究[J]. 材料导报, 2025, 39(22): 24100187-7.
[6] 万福程, 梁继超, 于爱华, 张嘉振, 路新. 钛涂层制备与后处理工艺及应用研究进展[J]. 材料导报, 2025, 39(2): 24010131-9.
[7] 龙海洋, 徐鑫, 马占山, 贾志强, 刘泽宇, 余烁, 史海江, 王新, 贵永亮. 曲面激光熔覆的研究现状及发展趋势[J]. 材料导报, 2025, 39(18): 24080076-8.
[8] 杨家盛, 邓明科, 张阳玺, 张敏, 范洪侃. 快速修补用高早强高延性混凝土的力学行为[J]. 材料导报, 2025, 39(15): 23070057-8.
[9] 张鹏德, 李广, 刘玉鹏, 石玗. 热处理对热丝激光增材制造17-4PH不锈钢组织性能的影响[J]. 材料导报, 2025, 39(15): 24080123-7.
[10] 韩娟, 龙雨, 徐流杰, 赖伟基, 龙绍檑, 邓澄, 周圣丰, 于振涛, 李卫, 易艳良. 激光熔覆高熵合金涂层的研究进展[J]. 材料导报, 2025, 39(13): 24050222-16.
[11] 解光瑞, 杨盼盼, 孙吉, 杨阳, 丁红宇, 刘兴光, 张世宏. 30CrNi2MoVA钢等离子体渗氮层表征及其对宏观力学性能的影响[J]. 材料导报, 2025, 39(13): 24050145-8.
[12] 杜娴, 禹东欣, 柳建, 蔡志海, 何东昱, 王晓龙. Si含量对激光熔覆FeCoNiBSiNb非晶合金复合材料力学和摩擦学性能的影响[J]. 材料导报, 2025, 39(12): 24050125-7.
[13] 顾建, 刘敬华, 王秀龙, 刘胜春, 司佳钧, 王欣欣. Mg含量对粉末渗锌层组织、耐磨性和耐蚀性的影响[J]. 材料导报, 2025, 39(12): 24040189-7.
[14] 申爱琴, 陈荣伟, 郭寅川, 范建航, 戴晓倩, 丑涛. 季冻区纳米SiO2改性SAP路面混凝土的耐磨性[J]. 材料导报, 2024, 38(7): 23010093-6.
[15] 谢晓明, 沈鹰, 刘秀波, 朱正兴, 李明曦. Mn含量对激光熔覆FeCoCrNiMnx高熵合金涂层高温摩擦学性能的影响[J]. 材料导报, 2024, 38(23): 23120066-9.
[1] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[2] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[3] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[4] WANG Xinyu, ZHEN Siqi, DONG Zhengchao, ZHONG Chonggui. Electrocaloric Effects of Ferroelectric Materials: an Overview[J]. Materials Reports, 2017, 31(19): 13 -18 .
[5] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[6] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[7] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[8] WANG Bilei, LI Yongcan, SONG Changjiang. A State-of-the-art Review on Yield Point Elongation Phenomenon of Low Carbon Steel[J]. Materials Reports, 2018, 32(15): 2659 -2665 .
[9] ZHU Yaming, ZHAO Chunlei, LIU Xian, ZHAO Xuefei, GAO Lijuan, CHENG Junxia. Study on the Basic Physical Properties of Toluene Soluble Extracted from Coal Tar Pitch[J]. Materials Reports, 2019, 33(2): 368 -372 .
[10] ZHOU Chao, LI Detian, ZHOU Hui, ZHANG Kaifeng, CAO Shengzhu. Non-evaporable Getter Films for Vacuum Packaging of MEMSDevices: an Overview[J]. Materials Reports, 2019, 33(3): 438 -443 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed