Please wait a minute...
材料导报  2025, Vol. 39 Issue (22): 24100187-7    https://doi.org/10.11896/cldb.24100187
  金属与金属基复合材料 |
金刚石增强镍基耐磨涂层的制备及性能研究
刘果, 张健*, 庞小通, 郭永伟, 胡耀文
长沙理工大学汽车与机械工程学院,长沙 410114
Preparation and Properties of Diamond-reinforced Nickel-based Wear-resistant Coatings
LIU Guo, ZHANG Jian*, PANG Xiaotong, GUO Yongwei, HU Yaowen
College of Automotive and Mechanical Engineering, Changsha University of Science and Technology, Changsha 410114, China
下载:  全 文 ( PDF ) ( 94883KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 钎涂作为材料表面改性和关键构件寿命延长的重要方法,在诸多领域有广阔的应用前景。为实现高性能金刚石增强镍基耐磨涂层的制备,本工作采用氩气保护钎涂法在45钢表面制备金刚石/NiCrBSi复合涂层,研究了金刚石/NiCrBSi复合涂层的微观组织、力学性能及耐磨性能。结果表明:金刚石/NiCrBSi复合涂层成形良好,钎料合金与钢基体之间存在明显的元素扩散,实现了良好的冶金结合;金刚石弥散分布在涂层中,与钎料合金发生冶金反应,金刚石中的C元素与钎料中的Cr元素反应生成了Cr3C2和Cr7C3;金刚石的添加可显著提高镍基涂层的硬度、冲击性能及耐磨性能,添加质量分数为10%的金刚石后,复合涂层的宏观硬度达到70.04HRC,是纯钎料涂层的1.5倍;复合涂层冲击韧性达到26.72 J/cm2,约为纯钎料涂层的1.4倍;在相同磨损条件下,钢基体质量损失29 mg,纯钎料涂层质量损失11.4 mg,复合涂层质量损失仅2.7 mg,约为钢基体的1/11、纯钎料涂层的1/4。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘果
张健
庞小通
郭永伟
胡耀文
关键词:  钎涂  复合涂层  金刚石  NiCrBSi  耐磨性能    
Abstract: As an important method of material surface modification and life extension of critical components, brazing coating has a broad application in many fields. In order to realize the preparation of high-performance diamond enhanced nickel-based wear-resistant coatings, the diamond/NiCrBSi composite coatings were prepared on the surface of 45 steel by the argon gas-protected brazing coating method in this work. The microstructures, mechanical and wear-resistant properties of composite coatings were investigated. The results show that the diamond/NiCrBSi composite coating is well formed, and there is obvious element diffusion between brazing filler alloy and steel matrix, which realizes good metallurgical bonding. The diamond particles are distributed dispersedly in the coating, and metallurgical reaction occurs between brazing filler alloy and diamond. The C element in the diamond reacts with Cr element in the brazing filler alloy to generate Cr3C2 and Cr7C3. The addition of diamond significantly improves the hardness, impact performance and wear resistance of the composite coating. After addition of 10wt% diamond, the macroscopic hardness of the coating reaches 70.04HRC, which is 50% higher than that of the pure brazing filler coating. The impact toughness of composite coating is 26.72 J/cm2, which is about 1.4 times that of the pure brazing filler coating. Under the same wear conditions, the mass loss of steel matrix is 29 mg, the mass loss of pure brazing filler coating is 11.4 mg, and the mass loss of composite coating is only 2.7 mg, which is about 1/11 of that of steel matrix and 1/4 of that of pure brazing filler coating.
Key words:  brazing coating    composite coating    diamond    NiCrBSi    wear resistance
出版日期:  2025-11-25      发布日期:  2025-11-14
ZTFLH:  TG454  
基金资助: 湖南省自然科学基金(2023JJ30046);四川省科技计划(2024NSFSC0151)
通讯作者:  *张健,博士,长沙理工大学汽车与机械工程学院教授。目前主要从事先进材料设计与成形制造等方面的研究。zj4343@163.com   
作者简介:  刘果,长沙理工大学汽车与机械工程学院硕士研究生,在张健教授的指导下开展耐磨材料与涂层的研究。
引用本文:    
刘果, 张健, 庞小通, 郭永伟, 胡耀文. 金刚石增强镍基耐磨涂层的制备及性能研究[J]. 材料导报, 2025, 39(22): 24100187-7.
LIU Guo, ZHANG Jian, PANG Xiaotong, GUO Yongwei, HU Yaowen. Preparation and Properties of Diamond-reinforced Nickel-based Wear-resistant Coatings. Materials Reports, 2025, 39(22): 24100187-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24100187  或          https://www.mater-rep.com/CN/Y2025/V39/I22/24100187
1 Cao Z X, Zhou Y M, Zhang F L, et al. Diamond & Abrasives Engineering, 2019, 39(3), 93(in Chinese).
曹忠溪, 周玉梅, 张凤林, 等. 金刚石与磨料磨具工程, 2019, 39(3), 93.
2 Long W M, Qin J, Lu Q B, et al. Materials Reports, 2022, 36(7), 98(in Chinese).
龙伟民, 秦建, 路全彬, 等. 材料导报, 2022, 36(7), 98.
3 Wu Q L, Zhang L, Sun H W, et al. Diamond & Abrasives Engineering, 2021, 41(5), 9(in Chinese).
吴奇隆, 张雷, 孙华为, 等. 金刚石与磨料磨具工程, 2021, 41(5), 9.
4 Long W M, Lu Q B, Zhong S J, et al. Welding in the World, 2022, 66(5), 1.
5 Wang X X, Li Y, Wu S J, et al. Rare Metal Materials and Engineering, 2024, 53(1), 215(in Chinese).
王星星, 李阳, 武胜金, 等. 稀有金属材料与工程, 2024, 53(1), 215.
6 Lo W M, Liu D S, Dong X, et al. Surface Engineering, 2020, 36(12), 1315.
7 Long W M, Liu D S, Wu A P, et al. Diamond And Related Materials, 2020, 110, 108085.
8 Feng S S, Wang B L, Chen Z H, et al. Materials Research and Application, 2024, 18(5), 787(in Chinese).
冯帅帅, 王邦伦, 陈志浩, 等. 材料研究与应用, 2024, 18(5), 787.
9 Zhang L. Journal of Manufacturing Processes, 2021, 66, 651.
10 Huang G Q, Wang Y D, Zhang M Q, et al. Chinese Journal of Aeronautics, 2021, 34(6), 67.
11 Long W M, Liu D S, Wu A P, et al. Journal of Mechanical Engineering, 2023, 59(12), 225(in Chinese).
龙伟民, 刘大双, 吴爱萍, 等. 机械工程学报, 2023, 59(12), 225.
12 Cui B, Zhao W X, Zuo R Z, et al. Diamond & Related Materials, 2022, 124, 108926.
13 Mukhopadhyay P, Ghosh A. Journal of Manufacturing Processes, 2022, 73, 220.
14 Xu Q, Zhang J, Mao C, et al. International Journal of Refractory Metals and Hard Materials, 2022, 106, 105874.
15 Long W M, Hao Q L, Fu Y C, et al. Materials Reports, 2020, 34(23), 23138(in Chinese).
龙伟民, 郝庆乐, 傅玉灿, 等. 材料导报, 2020, 34(23), 23138.
16 SiX Q, Gao J W, Yang B, et al. Materials Characterization, 2024, 207, 113573.
17 Hou M, Huang G Q. Superhard Material Engineering, 2023, 35(3), 40(in Chinese).
侯淼, 黄国钦. 超硬材料工程, 2023, 35(3), 40.
18 Xiao A, Zhang J, Pang X T, et al. Diamond & Related Materials, 2024, 146, 111165.
19 Zhang A, Zhang J, Zhang M J, et al. Soldering & Surface Mount Technology, 2023, 35(5), 265.
20 Cui B, Wang P B, Zhao W X, et al. Diamond & Related Materials, 2023, 133, 109722.
21 Zhang J, Li X, Xu Q, et al. Materials Reports, 2022, 36(15), 40(in Chinese).
张健, 李鑫, 徐琦, 等. 材料导报, 2022, 36(15), 40.
22 Wang N, Zhang L, Jiu Y T, et al. Materials Research and Application, 2023, 17(6), 1125(in Chinese).
王楠, 张雷, 纠永涛, 等. 材料研究与应用, 2023, 17(6), 1125.
23 Si H, Qin J, Zhong S J, et al. Materials Reports, 2021, 35(S2), 333(in Chinese).
司浩, 秦建, 钟素娟, 等. 材料导报, 2021, 35(S2), 333.
24 Wang X X, Wu S J, Li S, et al. The Chinese Journal of Nonferrous Metals, 2021, 31(1), 72(in Chinese).
王星星, 武胜金, 李帅, 等. 中国有色金属学报, 2021, 31(1), 72.
25 Qin J, You M Z, Si H, et al. Welding in the World, 2023, 67(11), 2621.
26 Qin J, Long W M, Lu Q B, et al. Materials Reports, 2020, 34(S2), 1457(in Chinese).
秦建, 龙伟民, 路全彬, 等. 材料导报, 2020, 34(S2), 1457.
27 Si H, Qin J, Zhong S J, et al. Rare Metal Materials and Engineering, 2023, 52(3), 1027(in Chinese).
司浩, 秦建, 钟素娟, 等. 稀有金属材料与工程, 2023, 52(3), 1027.
28 LiH D, Li K N, Fan Y G, et al. Diamond & Related Materials, 2022, 128, 109276.
29 FanY G, Li K N, Li H D, et al. Journal of Materials Science & Technology, 2022, 131, 100.
30 WangC, Li H D, Fan Y G. Diamond & Related Materials, 2024, 141, 110706.
31 LiuS X, Liu M M, Liu T H, et al. Vacuum, 2023, 216, 112456.
32 Sun Y, Zhao X, Su J, et al. Transactions of the China Welding Institution, 2020, 41(7), 32.
33 Mukhopadhyay P, Ghosh A. International Journal of Refractory Metals and Hard Materials, 2018, 72, 236.
34 Ohsasa K, Narita T, Shinmura T. Journal of Phase Equilibria, 1999, 20(3), 199.
35 WangP C, Xu Z Q, Liu X F, et al. Carbon, 2022, 191, 290.
36 Dai S G, Li J W, Lu N X. Diamond & Related Materials, 2020, 108, 107993.
37 Xu LY, Chen X, Jing H Y, et al. Materials Science & Engineering A, 2016, 66, 787.
[1] 范锡宇, 赵珍, 马剑平, 周雪琴. 多层结构绿色植被高光谱伪装材料的设计与制备[J]. 材料导报, 2025, 39(7): 24030086-8.
[2] 吴国栋, 张文, 伏鑫, 刘辉强, 汪建, 王兵, 熊鹰. 锰气相催化多晶金刚石表面原位石墨烯构筑研究[J]. 材料导报, 2025, 39(5): 24010176-4.
[3] 徐照英, 苏永要, 张腾飞, 王锦标, 吴杰. 钛合金表面硅铜共掺杂类金刚石复合薄膜微观结构与摩擦学性能研究[J]. 材料导报, 2025, 39(19): 24080234-6.
[4] 汤黎辉, 肖长江, 周彬, 栗正新. 高温高压法制备高导热金刚石/铜复合材料的研究现状[J]. 材料导报, 2025, 39(18): 24080072-6.
[5] 汪科良, 刑振华, 任守志, 赵蒙, 周晖, 张凯锋, 成志忠, 冯兴国, 曹珍, 贺颖. 超润滑薄膜研究进展及在航天领域的应用展望[J]. 材料导报, 2025, 39(15): 25030083-9.
[6] 李灏, 刘宇伦, 刘金龙, 陈良贤, 李成明, 魏俊俊. 真空热处理对金刚石基TaxN薄膜微观结构及电学性能的影响[J]. 材料导报, 2025, 39(15): 24060003-5.
[7] 杜娴, 禹东欣, 柳建, 蔡志海, 何东昱, 王晓龙. Si含量对激光熔覆FeCoNiBSiNb非晶合金复合材料力学和摩擦学性能的影响[J]. 材料导报, 2025, 39(12): 24050125-7.
[8] 顾建, 刘敬华, 王秀龙, 刘胜春, 司佳钧, 王欣欣. Mg含量对粉末渗锌层组织、耐磨性和耐蚀性的影响[J]. 材料导报, 2025, 39(12): 24040189-7.
[9] 王成君, 杨晓东, 张辉, 周幸叶, 戴家赟, 李早阳, 段晋胜, 乔丽, 王广来. 薄界面异质异构晶圆键合技术研究现状及趋势[J]. 材料导报, 2024, 38(24): 23100102-14.
[10] 王彦, 杨凯, 吕绪明, 党博, 魏东博, 张平则. 石墨表面双辉等离子Ta/TaC涂层抗热震性能研究[J]. 材料导报, 2024, 38(23): 23080013-9.
[11] 何东青, 冯子涵, 郑文文, 李文生, 尚伦霖. Cr3C2-NiCr/AlCrN复合涂层高温摩擦学行为研究[J]. 材料导报, 2024, 38(21): 23060112-7.
[12] 张雷, 龙伟民, 樊志斌, 都东, 刘大双, 孙志鹏, 李宇佳, 尚勇. CuTi对Ti-6Al-4V钛合金表面金刚石/AlSi复合钎涂层组织与耐磨性能的影响[J]. 材料导报, 2024, 38(21): 23080114-4.
[13] 韩赛斌, 胡秀飞, 王英楠, 王子昂, 张晓宇, 彭燕, 葛磊, 徐明升, 徐现刚, 冯志红. 金刚石单晶中的位错及其对器件影响的研究进展[J]. 材料导报, 2024, 38(20): 23100241-14.
[14] 赵永生, 阎峰云, 刘雪. B掺杂对金刚石热导率的影响[J]. 材料导报, 2024, 38(20): 23080238-8.
[15] 舒林森, 张粲东, 于鹤龙, 张朝铭. 激光熔覆原位Ti-C-B-Al复合涂层的结构特征与力学性能[J]. 材料导报, 2024, 38(2): 22080162-5.
[1] JIN Qinglin, WANG Yang, CAO Lei, SONG Qunling. Effect of Nitriding in Mushy Zone on the Nitrogen Content and Solidification Transformation of Cr10Mn9Ni0.7 Alloy[J]. Materials Reports, 2018, 32(4): 579 -583 .
[2] WANG Shengmin, ZHAO Xiaojun, HE Mingyi. Research Status and Development of Mechanical Plating[J]. Materials Reports, 2017, 31(5): 117 -122 .
[3] HE Yuandong, SUN Changzhen, MAO Weiguo, MAO Yiqi, ZHANG Honglong, CHEN Yanfei, PEI Yongmao, FANG Daining. Measurement of Transverse Piezoelectric Coefficients of Pb(Zr0.52Ti0.48)O3 Thin Films by a Mechano-electrical Multiphysics Coupling, Bulge Test Method[J]. Materials Reports, 2017, 31(15): 139 -144 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[6] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[7] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[8] DU Min, SONG Dian, XIE Ling, ZHOU Yuxiang, LI Desheng, ZHU Jixin. Electrospinning in Rechargeable Ion Batteries for High Efficient Energy Storage[J]. Materials Reports, 2018, 32(19): 3281 -3294 .
[9] LIU Xiao, XU Qian, LAI Guanghong, GUAN Jianan, XIA Chunlei, WANG Ziming, CUI Suping. Application Performances and Mechanism of Polycarboxylic Acid in Different Comb-bonded Structures in High-performance Concrete[J]. Materials Reports, 2018, 32(22): 4011 -4015 .
[10] ZHANG Di, YANG Di, XU Cui, ZHOU Riyu, LI Hao, LI Jing, WANG Peng. Study on Mechanism of Highly Effective Adsorption of Bisphenol F by Reduced Graphene Oxide[J]. Materials Reports, 2019, 33(6): 954 -959 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed