Please wait a minute...
材料导报  2025, Vol. 39 Issue (15): 25030083-9    https://doi.org/10.11896/cldb.25030083
  空间润滑材料 |
超润滑薄膜研究进展及在航天领域的应用展望
汪科良1, 刑振华1, 任守志2, 赵蒙1, 周晖1, 张凯锋1,*, 成志忠2,*, 冯兴国1, 曹珍1, 贺颖1
1 兰州空间技术物理研究所真空技术与物理全国重点实验室,兰州 730000
2 北京空间飞行器总体设计部,北京 100094
Research Progress on Super-lubricating Films and Prospect of Its Astronautical Applications
WANG Keliang1, XING Zhenhua1, REN Shouzhi2, ZHAO Meng1, ZHOU Hui1, ZHANG Kaifeng1,*, CHENG Zhizhong2,*, FENG Xingguo1, CAO Zhen1, HE Ying1
1 National Key Laboratory on Vacuum Technology and Physics, Lanzhou Institute of Physics, Lanzhou 730000, China
2 Beijing Institute of Spacecraft System Engineering, Beijing 100094, China
下载:  全 文 ( PDF ) ( 32433KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 固体润滑薄膜以其非挥发性和宽温域适应性,成为空间机构极端环境长效运行的核心保障。近年来,超润滑技术实现从基础研究到宏观尺度的突破,虽未达理论零摩擦,但其在航天领域的技术优势显著。本文聚焦航天领域特殊工况,系统分析过渡金属二硫化物(TMDs)和氢化类金刚石碳(H-DLC)薄膜的超润滑机制,阐明实现宏观尺度超润滑的关键科学问题与技术挑战。TMDs需满足原子级洁净界面、范德华主导机制及非公度接触三大本征条件,通过超晶格异质界面工程、多层梯度薄膜构筑等创新策略,使MoS2在宏观尺度下也具备超润滑特性;H-DLC真空超润滑依赖碳原子氢钝化效应,通过氢含量调控、元素掺杂及多层复合结构设计解决氢脱附引发的失效问题。建议分阶段推进超润滑固体薄膜技术在航天工程中的应用,在技术发展初期阶段,首先选择一次性机构(压紧释放机构、展开机构),逐步拓展至长寿命连续运行机构,通过持续迭代优化,推动超润滑技术成为新一代航天器的核心支撑技术。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
汪科良
刑振华
任守志
赵蒙
周晖
张凯锋
成志忠
冯兴国
曹珍
贺颖
关键词:  固体润滑  航天应用  超润滑  过渡金属二硫化物(TMDs)  氢化类金刚石碳(H-DLC)    
Abstract: Solid lubricating films, characterized by their non-volatility and broad temperature adaptability, have emerged as critical components ensuring long-term reliability of space mechanisms under extreme environments. Although the superlubricating technology has not reached the theoretical frictionless limit, it has shown remarkable technical advantages in the aerospace field from basic research to macro-scale breakthroughs. This study systematically investigates the superlubricity mechanisms of transition metal dichalcogenides (TMDs) and hydrogenated diamond-like carbon (H-DLC) films under peculiar aerospace operating conditions, and clarifies the critical scientific obstacles and technical challenges for achieving macro-scale breakthroughs. The realization of superlubricity in TMDs necessitates intrinsic conditions including atomically clean interfaces, van der Waals-dominated interaction mechanisms and incommensurate contact configurations, which can be achieved by innovative strategies such as supersurface heterointerface engineering and multilayered gradient architecture. The vacuum superlubricity of H-DLC relies on hydrogen passivation, and the failure problem caused by hydrogen desorption can be solved through hydrogen content regulation, element doping and multilayer composite structure design. It is suggested that the application of superlubricating films in aerospace engineering should be promoted in stages. At the initial stage, superlubricating films can be used to verify disposable mechanisms, such as compression and release mechanisms and expansion mechanisms. Gradually expanding to continuous operation mechanisms, and promoting the new generation of spacecraft with superlubrication technology as the core through continuous iteration.
Key words:  solid lubrication    astronautical applications    superlubricity    transition metal dichalcogenides (TMDs)    hydrogenated diamond-like carbon (H-DLC)
出版日期:  2025-08-10      发布日期:  2025-08-13
ZTFLH:  TH117.2  
通讯作者:  张凯锋,博士,兰州空间技术物理研究所研究员,硕士研究生导师。目前主要从事超润滑薄膜技术、无机有机粘结涂层技术、新型空间润滑油脂与防爬层材料技术、柔性航天器集成技术等方面的研究。zhangkf510@sina.com
成志忠,北京空间飞行器总体设计部研究员。目前主要从事航天器结构研制等方面的研究。czzfly@sina.com   
作者简介:  汪科良,博士,兰州空间技术物理研究所工程师。目前主要从事超润滑薄膜技术、PVD镀膜技术等方面的研究。
引用本文:    
汪科良, 刑振华, 任守志, 赵蒙, 周晖, 张凯锋, 成志忠, 冯兴国, 曹珍, 贺颖. 超润滑薄膜研究进展及在航天领域的应用展望[J]. 材料导报, 2025, 39(15): 25030083-9.
WANG Keliang, XING Zhenhua, REN Shouzhi, ZHAO Meng, ZHOU Hui, ZHANG Kaifeng, CHENG Zhizhong, FENG Xingguo, CAO Zhen, HE Ying. Research Progress on Super-lubricating Films and Prospect of Its Astronautical Applications. Materials Reports, 2025, 39(15): 25030083-9.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.25030083  或          https://www.mater-rep.com/CN/Y2025/V39/I15/25030083
1 Fusaro L. In:2001 Annual Meeting. Orlando, Florida, 2001.
2 Roberts E W. Journal of Physics D:Applied Physics, 2012, 45(50), 503001.
3 Hirano M, Shinjo K. Wear, 1993, 168(1-2), 121.
4 Li JJ, Luo J B. Chinese Journal of Nature, 2014, 36(4), 248(in Chinese) .
李津津, 雒建斌. 自然杂志, 2014, 36(4), 248.
5 Liu X G, Zhang K F, Zhou H, et al. Materials Reports, 2021, 35(9), 9150(in Chinese).
刘兴光, 张凯锋, 周晖, 等. 材料导报, 2021, 35(9), 9150.
6 Cihan E, İpek S, Durgun E, et al. Nature Communications, 2016, 7(1), 12055.
7 Spear J C, Ewers B W, Batteas J D. Nano Today, 2015, 10(3), 301.
8 Liu Y, Song A, Xu Z, et al. ACS Nano, 2018, 12(8), 7638.
9 Miyoshi K. Solid Lubricants and Coatings for Extreme Environments:State-of-the-Art Survey. 2007.
10 Li H, Ju S, Ji L, et al. Surface Science and Technology, 2023, 1(1), 27.
11 Krause O, Müller F, Scheithauer S, et al. In:Proc. 13th ESMATS, Vienna, Austria, 2009.
12 Ma G Z, Xu B S, Wang H D, et al. Materials Reports, 2010(1), 68(in Chinese).
马国政, 徐滨士, 王海斗, 等. 材料导报, 2010(1), 68.
13 Yu D Y, Weng L J. Ou Y J L. Journal of Tribology, 1996, 16(1), 89(in Chinese).
于德洋, 翁立军. 摩擦学学报, 1996, 16(1), 89.
14 Robertson J. Materials Science and Engineering:R:Reports, 2002, 37(4-6), 129.
15 Erdemir A, Donnet C. T. Journal of Physics D:Applied Physics, 2006, 39(18), 311.
16 Vanhulsel A, Velasco F, Jacobs R, et al. Tribology International, 2007, 40(7), 1186.
17 Zhou H, Zheng J, Sang R P, et al. In:14th European Space Mechanisms and Tribology Symposium. Germany, 2011.
18 Lince J R. Lubricants, 2020, 8(7), 74.
19 Roberts E W. Tribology International, 1990, 23(2), 95.
20 Buttery M. In:Proceedings of the 40th Aerospace Mechanisms Symposium. Warrington, UK, 2010.
21 Batista J, Vise J, Young K. In:In Proceedings of the 28th Aerospace Mechanisms Symposium. Cleveland, OH, USA, 1994.
22 Donnet C, Le Mogne Th, Martin J M. Surface and Coatings Technology, 1993, 62(1-3), 406.
23 Martin J M, Donnet C, Le Mogne T, et al. Physical Review B, 1993, 48(14), 10583.
24 Martin J M, Pascal H, Donnet C, et al. Surface and Coatings Technology, 1994, 68-69, 427.
25 Hirano M, Shinjo K. Physical Review B, 1990, 41(17), 11837.
26 Sokoloff J B. Physical Review B, 1990, 42(1), 760.
27 Hod O, Meyer E, Zheng Q, et al. Nature, 2018, 563(7732), 485.
28 Huang K, Qin H, Zhang S, et al. Advanced Functional Materials, 2022, 32(35), 2204209.
29 Belim S V, Tikhomirov I V, Bychkov I V. Coatings, 2022, 12(6), 853.
30 Donnet C, Martin J M, Le Mogne Th, et al. Tribology International, 1996, 29(2), 123.
31 Ren S, Cui M, Martini A, et al. Cell Reports Physical Science, 2023, 4(5), 101390.
32 Shi Y, Zhang J, Pu J, et al. Composites Part B:Engineering, 2023, 250, 110460.
33 Dong C, Jiang D, Fu Y, et al. Friction, 2024, 12(1), 52.
34 Tian J, Jin J, Zhang C, et al. Applied Surface Science, 2022, 578, 152068.
35 Sun L, Gao K, Jia Q, et al. Diamond and Related Materials, 2021, 117, 108479.
36 Li P, Yi Wang W, Zou C, et al. Applied Surface Science, 2023, 613, 155760.
37 Büch H, Rossi A, Forti S, et al. Nano Research, 2018, 11(11), 5946.
38 Erdemir A, Eryilmaz O L, Nilufer I B, et al. Diamond and Related Materials, 2000, 9(3-6), 632.
39 Donnet C, Fontaine J, Grill A, et al. Tribology Letters, 2001, 9(3/4), 137.
40 Erdemir A. Surface and Coatings Technology, 2001, 146-147, 292.
41 Hayashi K, Tezuka K, Ozawa N, et al. The Journal of Physical Chemistry C, 2011, 115(46), 22981.
42 Piotrowski P L, Cannara R J, Gao G, et al. Journal of Adhesion Science and Technology, 2010, 24(15-16), 2471.
43 Guo H, Qi Y, Li X. Applied Physics Letters, 2008, 92(24), 241921.
44 Erdemir A, Eryilmaz O. Friction, 2014, 2(2), 140.
45 Liu Y, Yu B, Cao Z, et al. Applied Surface Science, 2018, 439, 976.
46 Jang S, Chen Z, Kim S H. Friction, 2025, 13(1), 9440995.
47 Erdemir A, Eryilmaz O L, Fenske G. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films, 2000, 18(4), 1987.
48 Härtwig F, Lorenz L, Makowski S, et al. Materials, 2022, 15(7), 2534.
49 Andersson J, Erck R A, Erdemir A. Surface and Coatings Technology, 2003, 163-164, 535.
50 Fontaine J, Donnet C, Grill A, et al. Surface and Coatings Technology, 2001, 146-147, 286.
51 Yu Q, Chen X, Zhang C, et al. Friction, 2022, 10(12), 1967.
52 Yu Q, Chen X, Zhang C, et al. Carbon, 2022, 196, 499.
53 Cui L, Zhou H, Zhang K, et al. Tribology International, 2018, 117, 107.
54 Fontaine J, Loubet J L, Mogne T Le, et al. Tribology Letters, 2004, 17(4), 709.
55 Moolsradoo N, Watanabe S. Diamond and Related Materials, 2010, 19(5-6), 525.
56 Zhang R, Zhao J, Yang Y, et al. Current Applied Physics, 2018, 18(3), 317.
57 Freyman C A, Chen Y, Chung Y W. Surface and Coatings Technology, 2006, 201(1-2), 164.
58 Liu X, Yang J, Hao J, et al. Advanced Materials, 2012, 24(34), 4614.
59 Liu X, Yang J, Hao J, et al. Surface and Coatings Technology, 2012, 206(19-20), 4119.
60 Wu Y, Li H, Ji L, et al. Tribology Letters, 2013, 52(3), 371.
61 Kato K, Umehara N, Adachi K. Wear, 2003, 254(11), 1062.
62 Zhao F, Li H, Ji L, et al. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films, 2016, 34(3), 031504.
63 Jiang J, Hao J, Wang P, et al. Journal of Applied Physics, 2010, 108(3), 033510.
64 Chen X, Zhang C, Kato T, et al. Nature Communications, 2017, 8(1), 1675.
65 Zhang C, Deng W, Xu J, et al. Thin Solid Films, 2022, 753, 139275.
66 Wu Y, Li H, Ji L, et al. Journal of Physics D:Applied Physics, 2013, 46(42), 425301.
67 Chen Y, Li H, Su F, et al. Tribology International, 2023, 189, 108988.
68 Wu Y, Li H, Ji L, et al. Surface and Coatings Technology, 2013, 236, 438.
69 Li X Y. Design, preparation and simulation space application of MoS2-C composite films. Master's Thesis, Northwest Minzu University, China, 2023(in Chinese).
李煊禹. MoS2-C复合薄膜的设计制备及模拟空间应用研究. 硕士学位论文, 西北民族大学, 2023.
70 Cheng Z, Wei X, Gao K, et al. Surface and Interface Analysis, 2023, 55(10), 730.
71 Yokota K, Tagawa M, Kitamura A, et al. Applied Surface Science, 2009, 255(13-14), 6710.
72 Shi P, Zhang D, He Z, et al. Diamond and Related Materials, 2024, 144, 110997.
[1] 何涛, 马国政, 李海庆, 石佳东, 李振, 郭伟玲, 邢志国. 固体润滑齿轮接触疲劳寿命及影响因素研究现状[J]. 材料导报, 2025, 39(1): 23120091-15.
[2] 陈进, 李默涵, 阮文琳, 孙涛, 刘晓英. SiO2纳米颗粒在润滑领域中的研究与应用现状[J]. 材料导报, 2024, 38(5): 23080225-9.
[3] 霍丽霞, 苟世宁, 郭芳君, 贺颖, 冯凯, 周晖, 张凯锋. 溶胶-凝胶法制备聚酰胺-酰亚胺粘结MoS2/SiOx固体润滑涂层及其真空摩擦学性能研究[J]. 材料导报, 2022, 36(22): 22050078-5.
[4] 杨传超, 徐鸿杰, 田国峰, 张静静, 高鸿, 卓航, 张梦颖, 战佳宇, 武德珍. 高强高模聚酰亚胺纤维的空间环境适应性研究及在航天领域的应用前景分析[J]. 材料导报, 2022, 36(22): 22040361-5.
[5] 焦卫卫, 候春莉, 邹敏, 张海鹏. 超润滑技术的研究现状与发展方向[J]. 材料导报, 2021, 35(Z1): 476-480.
[6] 刘兴光, 张凯锋, 周晖, 冯兴国, 郑玉刚. 超润滑技术的发展现状[J]. 材料导报, 2021, 35(9): 9150-9156.
[7] 崔龙辰, 王军军, 黄伟九. 类聚合物碳薄膜的制备及其摩擦学研究进展[J]. 材料导报, 2019, 33(5): 797-804.
[1] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[2] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[3] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[4] WANG Xinyu, ZHEN Siqi, DONG Zhengchao, ZHONG Chonggui. Electrocaloric Effects of Ferroelectric Materials: an Overview[J]. Materials Reports, 2017, 31(19): 13 -18 .
[5] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[6] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[7] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[8] WANG Bilei, LI Yongcan, SONG Changjiang. A State-of-the-art Review on Yield Point Elongation Phenomenon of Low Carbon Steel[J]. Materials Reports, 2018, 32(15): 2659 -2665 .
[9] ZHU Yaming, ZHAO Chunlei, LIU Xian, ZHAO Xuefei, GAO Lijuan, CHENG Junxia. Study on the Basic Physical Properties of Toluene Soluble Extracted from Coal Tar Pitch[J]. Materials Reports, 2019, 33(2): 368 -372 .
[10] ZHOU Chao, LI Detian, ZHOU Hui, ZHANG Kaifeng, CAO Shengzhu. Non-evaporable Getter Films for Vacuum Packaging of MEMSDevices: an Overview[J]. Materials Reports, 2019, 33(3): 438 -443 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed