Mechanism Study on the Effect of V Microalloying on the Welding Performance of Q355 Steel Under Different Heat Inputs
JIANG Chunhui1,2, LI Zhaodong2, GAO Bo2, ZHU Lu2, WANG Yinpeng1,2, WEI Wei1,*
1 School of Materials Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, China 2 Institute for Structural Steels, Central Iron & Steel Research Institute Company Limited, Beijing 100081, China
Abstract: The effect of V microalloying on the welding performance of Q355 steel at different heat inputs was investigated using advanced characterization techniques, including thermo-mechanical simulator (Gleeble), scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), and transmission electron microscopy (TEM). The results show that under a welding heat input of 40—100 kJ/cm, the addition of 0.03% V adversely affects the low-temperature impact toughness of the steel. When the heat input is 20 kJ/cm, the addition of 0.03% V improves the low-temperature impact toughness at -40 ℃ by 15.3 J. Detailed analysis shows that at a heat input of 40—75 kJ/cm, the addition of 0.03% V suppresses the formation of acicular ferrite, while at a heat input of 100 kJ/cm, it leads to abnormally coarse grains in the experimental steel, significantly deteriorating impact toughness. At a heat input of 20 kJ/cm, the addition of 0.03% V enhances the hardenability of the steel. The pinning effect of MC particles on austenite grain boundaries refines austenite grains, facilitating the nucleation and growth of martensite. This contributes to a more dispersed distribution of M/A islands, reducing the likelihood of M/A islands at grain boundaries becoming crack initiation sites. Moreover, at a heat input of 20 kJ/cm, the presence of numerous fine MC particles in the heat-affected zone (HAZ) increases the precipitation strengthening contribution (σp), significantly enhancing the hardness of the HAZ and achieving an optimal balance between strength and toughness.
姜春晖, 李昭东, 高博, 朱露, 王寅鹏, 魏伟. V微合金化对Q355钢在不同热输入下焊接性能的影响机理研究[J]. 材料导报, 2025, 39(22): 24100146-6.
JIANG Chunhui, LI Zhaodong, GAO Bo, ZHU Lu, WANG Yinpeng, WEI Wei. Mechanism Study on the Effect of V Microalloying on the Welding Performance of Q355 Steel Under Different Heat Inputs. Materials Reports, 2025, 39(22): 24100146-6.
1 Metallurgical Industry Information Standards Research Institute. China Metallurgical News, DOI:10.28153/n.cnki.ncyjb.2024.002071 (in Chinese). 冶金工业信息标准研究院. 中国冶金报, DOI:10.28153/n.cnki.ncyjb.2024.002071. 2 Zhao P. China Metallurgical News, DOI:10.28153/n.cnki.ncyjb.2024.002219 (in Chinese). 赵萍. 中国冶金报, DOI:10.28153/n.cnki.ncyjb.2024.002219. 3 Jia L H. China Metallurgical News, DOI:10.28153/n.cnki.ncyjb.2024.002169 (in Chinese). 贾林海. 中国冶金报, DOI:10.28153/n.cnki.ncyjb.2024.002169. 4 Pu C L, Jiang Y, Yan D X, et al. Transactions of Materials and Heat Treatment, 2023, 44(7), 99(in Chinese). 蒲春雷, 姜嫄, 闫洞旭, 等. 材料热处理学报, 2023, 44(7), 99. 5 Wang S. Effect of Nb and V microalloying on the microstructure and impact toughness of CGHAZ welded P460NL1 steel. Master's Thesis, Yanshan University, China, 2022 (in Chinese). 王松. Nb、V微合金化对P460NL1钢焊接CGHAZ组织和冲击韧性的影响. 硕士学位论文, 燕山大学, 2022. 6 Hannerz N E. Welding Journal, 1975, 54(5), 162. 7 Das S, Karmakar A, Singh S B. High-performance ferrous alloys, Springer Nature Switzerland, 2021, pp.83. 8 Hu J, Du L X, Zang M, et al. Materials Characterization, 2016, 118, 446. 9 Gao Z Z, Chen X Y, Wang Y J, et al. Heat Treatment of Metals, 2022, 47(8), 163 (in Chinese). 高志喆, 陈小艳, 王永金, 等. 金属热处理, 2022, 47(8), 163. 10 Shi Z, Yang C, Wang R, et al. Materials Science and Engineering:A, 2016, 649, 270. 11 Liu Z H. Welding & Joining, 2007(9), 46 (in Chinese). 刘作辉. 焊接, 2007(9), 46. 12 Zhou J L, Huang G, Xiang S, et al. Special Steel, 2014, 35(3), 49(in Chinese). 周家林, 黄高, 向上, 等. 特殊钢, 2014, 35(3), 49. 13 Zhang J W, Li H J, Feng Z Z, et al. Welding & Joining, 2017(11), 58(in Chinese). 张笈玮, 李宏佳, 冯忠志, 等. 焊接, 2017(11), 58. 14 Yang Y H, Yuan S Q, Wu D, et al. Heat Treatment of Metals, 2019, 44(12), 132(in Chinese). 杨跃辉, 苑少强, 吴迪, 等. 金属热处理, 2019, 44(12), 132. 15 Wen T, Hu X, Song Y, et al. Materials Science and Engineering:A, 2013, 588, 201. 16 Hyzak J M, Bernstein I M. Metallurgical Transactions A, 1976, 7, 1217. 17 Farrar R A, Harrison P L. Journal of Materials Science, 1987, 22(11), 3812. 18 Xiao F R, Liao B, Ren D L, et al. Materials Characterization, 2005, 54(4-5), 305. 19 Tweed J H, Knott J F. Acta Metallurgica, 1987, 35(7), 1401. 20 Meester B D. ISIJ International, 1997, 37(6), 537. 21 Wang X N, Zhao Y J, Guo P F, et al. Journal of Materials Engineering and Performance, 2019, 28, 1810. 22 Qian Weifang. Baosteel Technology, 2021(6), 1 (in Chinese). 钱伟方. 宝钢技术, 2021(6), 1. 23 Thompson A W, Knott J F. Metallurgical Transactions A, 1993, 24, 523. 24 Bayraktar E, Kaplan D. Journal of Materials Processing Technology, 2004, 153, 87. 25 Bhadeshia H K D H, Christian J W. Metallurgical Transactions A, 1990, 21, 767. 26 Liu F F, Fu K J, Wang J J, et al. Shanghai Metal, 2018, 40(2), 7(in Chinese). 刘芳芳, 付魁军, 王佳骥, 等. 上海金属, 2018, 40(2), 7.